

Серводвигатель BRH

Преобразователь Lexium 05

Серводвигатель BRH

Lexium 05: Сервопривод предлагаемый фирмой Schneider Electric

Предложение с большими возможностями

Преобразователи Lexium 05 удовлетворяют требованиям по быстродействию, точности регулирования скорости и обладают высокими динамическими характеристиками при использовании комбинации серводвигателей BRH и BSH.

Это предложение охватывает широкий диапазон питающих напряжений и мощностей.

■ Преобразователи Lexium 05:

- □ 100...120 В однофазный, от 0.4 до 0.85 кВт (LXM 05●●●F1)
- □ 200...240 В однофазный, от 0.4 до 2.5 кВт (LXM 05CU70M2, LXM 05•D••M2)
- □ 200...240 В трехфазный, от 0.75 до 3.2 кВт (LXM 05●●●M3X)
- □ 380...480 В трехфазный, от 1.4 до 6 кВт (LXM 05••••N4)

■ Серводвигатели BSH:

- □ Номинальный момент: от 0.41 до 10 Н \cdot м
- □ Номинальная скорость: от 1500 до 6000 об./мин

■ Серводвигатели BSH:

- □ Номинальный момент: от 0.43 до 28.2 Н•м
- □ Номинальная скорость: от 1500 до 6000 об./мин

Устройства серии Lexium 05 комплектуются планетарными редукторами GBX. Эти редукторы предлагаются с 15 вариантами передаточного отношения от 3:1 до 100:1. Редукторы GBX отличаются экономичностью, характеризуются удобством монтажа, не требуют

гедукторы съск отличаются экономичностью, характеризуются удооством монтажа, не треоуют повторной смазки в течение всего срока службы и спроектированы для приложений, которые нечувствительны к механическим люфтам.

Сервоприводы Lexium 05 могут также использоваться совместно с контроллерами Lexium. Это сочетание представляет простое и экономичное решение, предлагающее верный уровень эффективности для компактных или блочных механизмов, требующих синхронизации координат.

Сервоприводы Lexium 05 соответствуют международным стандартам EN 50178 и IEC/EN 61800-3, имеют сертификаты UL (США) и сUL (Канада) и маркировку С €.

Быстродействие и эффективность

Серводвигатели BRH и BSH представляют собой трехфазные синхронные двигатели. Их особенностью является наличие датчика положения SinCos Hiperface® и возможность наличия или отсутствия тормоза.

Высокое быстродействие BSH серводвигателей и точность регулирования скорости BRH серводвигателей позволяют расширить возможности контуров регулирования сервопривода Lexium 05 благодаря уменьшению периода дискретизации:

- 62.5 мкс для контура регулирования тока
- 250 мкс для контура регулирования скорости
- 250 мкс для контура регулирования положения

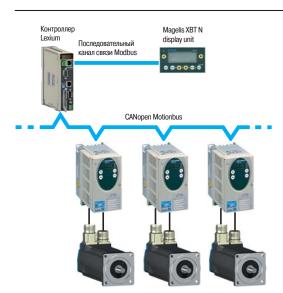
Серводвигатели BSH

Серводвигатели BRH спроектированы специально для того, чтобы удовлетворять требованиям по быстроходности и точности регулирования скорости благодаря моменту инерции ротора 1.

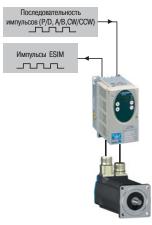
Серводвигатели BSH

Благодаря новой технологии изготовления магнитной системы, основанной на применении явно выраженных полюсов, серводвигатели BSH характеризуются компактностью и высокой удельной мошностью

Низкий момент инерции ротора 2 удовлетворяет требованиям fuли high dynamic perfuлиmance.


Schneider

Функции


(продолжение)

Устройство управления перемещениями Lexium 05

Презентация

Сервопривод Lexium 05A, управляемый контроллером Lexium по шине CANopen Motionbus

Режим электронного редуктора (импульсное управление положением)

Комплектное устройство

Устройство Lexium 05 совмещает функции и компоненты, которые обычно являются внешними, тем самым экономя место и упрощая интеграцию сервопривода в шкафы управления и механизмы.

Электромагнитная совместимость (ЭМС)

Подключение ЭМС фильтров класса А к сервоприводам LXM 05●●●F1, LXM 05●●●M2 и LXM 05••••N4 упрощает их установку благодаря экономичным способам монтажа в соответствии с требованиями маркировки С €.

Сервоприводы LXM 05●●●M3X не содержат ЭМС фильтра. Фильтры доступны как дополнительная опция и могут быть установлены пользователем для уменьшения уровня электромагнитного излучения (см. страницу 61065/3).

Безопасность

Преобразователи LXM 05A ● ● ● ● и LXM 05B ● ● ● ● включены в систему защиты установки. Они объединяют функцию защиты Power Removal, которая предотвращает непреднамеренное включение двигателя.

Эта функция удовлетворяет стандарту безопасности машин ISO 13849-1, представляющему уровень "d" (PLd) стандарта MЭК/EN 61508 SIL2, регламентирующего электрические установки, и стандарту для мощных систем привода МЭК/EN 61800-5-2.

Торможение

Сервопривод Lexium 05 содержит резистор в стандартной комплектации, что не требует в большинстве применений использования внешнего тормозного резистора.

Управление и интерфейсы

Сервоприводы Lexium 05 имеют много режимов работы:

- Режим позиционирования. Относительные и абсолютные перемещения.
- Режим движения по программе: программирование конфигурации относительных и абсолютных
- Режим электронного редуктора (импульсное управление положением).
- Управление скоростью с ограничением ускорения и замедления.
- Управление мгновенной скоростью.
- Управление током.

Сервопривод Lexium 05 также имеет традиционные режимы управления, такие как ручной режим (JOG), необходимые для простоты настройки.

В зависимости от модели, сервопривод Lexium 05 стандартно имеет четыре управляющих интерфейса:

- один интерфейс для CANopen, Modbus или PROFIBUS DP;
- один интерфейс для CANopen Motionbus;
- максимум 2 аналоговых входа задания ±10 В для задания уставок и ограничений скорости и тока;
- максимум 2 входа RS 422 (сигналы импульс/направление (P/D pulse/direction), сигналы энкодера типов A/B или CW/CCW).

Вход RS 422 может быть:

□ соединен с внешним энкодером, сигнал с которого может использоваться как задание для управления положением.

□ конфигурирован как выход для имитации энкодера (ESIM).

Эти интерфейсы дополнены логическими входами/ выходами, которые могут использоваться следующим образом для адаптации к различным устройствам контроля перемещений, имеющимся на рынке:

- в положительной логике (низкий уровень на входе, высокий на выходе);
- в отрицательной логике (высокий уровень на входе, низкий на выходе).

Schneider

Однофазное питающее напряжение 100...120 В Сочетания преобразователей и серводвигателей

Преобразователи Lexium 05A или 05B в сочетании с серводвигателями BRH или BSH

Серводвигатели

Преобразователи Lexium 05А и 05В

Однофазные 100...120 В питающего напряжения со встроенным ЭМС фильтром

BRH (IP 41 или IP 56)	BSH (IP 50 или IP 65)
BRH 0571T	
	BSH 0551T
BRH 0572P	
	BSH 0552T
BRH 0573P	
	BSH 0553T
	BSH 0701T
BRH 0574P	
BRH 0851P	
	BSH 0702T
	BSH 0703T
BRH 0852P	
	BSH 1001T
BRH 0853P	
BRH 0854P	

Номинальный режи	Относительный момен стопорения		
Номинальный момент	Номинальная скорость	Номинальная мощность	M ₀ / M _{Make} (1)
Н•м	об./мин	Вт	Н•м/Н•м
0.43	3000	135	0.46/1.15
0.46	3000	150	0.5/1.4
0.73	1500	120	0.76/2.07
0.8	3000	250	0.9/1.77
1.2	3000	380	1.4/2.42

^{(1) -} М_о· продолжительный момент стопорения - М_{мас}: максимальный момент стопорения

LXM 05AD17F1, I Продолжительны		вадратичный ток 8 А		LXM 05AD28F1, В Продолжительны		задратичный ток 15 А	
Номинальный режим работы		Относительный момент стопорения	Номинальный режим работы			Относительный момент стопорения	
Номинальный момент	Номинальная скорость	Номинальная мощность	M ₀ /M _{макс} (1)	Номинальный момент	Номинальная скорость	Номинальная мощность	M ₀ / M _{макс} (1)
Н•м	об./мин	Вт	Н•м/Н•м	Н•м	об./мин	Вт	Н•м/Н•м
0.8	3000	250	0.9/2.7				
1	1500	160	1.05/3.9				
1.1	3000	350	1.3/3.31				
1.22	1500	190	1.3/4.73				
1.76	1500	280	1.86/4.61				
1.83	3000	570	2.12/4.14				
				2.4	3000	750	2.8/7.38
				2.78	1500	440	3.1/8.7
				3.16	1500	500	3.4/8.5
				3.65	1500	570	4.2/9.7
				4.71	1500	740	5.3/13

Однофазное питающее напряжение 200...240 В Сочетания преобразователей и серводвигателей

Сочетания преобразователей Lexium 05A, 05B или 05C и серводвигателей BRH или BSH

Серводвигатели

Преобразователи Lexium 05A, 05B и 05C

Однофазные 200...240 В питающего напряжения со встроенным ЭМС фильтром

BRH (IP 41 или IP 56)	BSH (IP 50 или IP 65)
BRH 0571T	
BRH 0571P	
	BSH 0551T
BRH 0572P	
	BSH 0552T
	BSH 0552P
	BSH 0552M
BRH 0573P	
BRH 0574P	
	BSH 0553P
	BSH 0553T
	BSH 0553M
	BSH 0701P
	BSH 0701T
BRH 0851P	
BRH 0851M	DOLLO TOOD
	BSH 0702P
	BSH 0702T BSH 0702M
BRH 0852P	D3H 0702W
DITT 0002F	BSH 0703P
	BSH 0703T
BRH 0852M	
BRH 0853P	
	BSH 0703M
	BSH 1001T
BRH 0853M	
BRH 0854P	
BRH 0854M	
BRH 1101P	
	BSH 1002P
	BSH 1003P
BRH 1102P	
BRH 1103P	

Номинальный режи	Относительный момен стопорения				
Номинальный момент	Номинальная скорость	Номинальная мощность	M ₀ / M _{MAKC} (1)		
Н•м	об./мин	Вт	Н•м/Н•м		
0.41	6000	260	0.46/0.88		
0.43	3000	135	0.46/1.26		
0.46	3000	150	0.5/1.08		
0.7	3000	220	0.76/1.55		
0.77	3000	240	0.77/1.31		
0.81	3000	250	0.9/2.17		
0.85	1500	130	0.9/2.3		

^{(1) -} M_{g^*} продолжительный момент стопорения - $M_{_{\text{макс}}}$: максимальный момент стопорения

LXM 05AD10M2, BD10M2, CD10M2 Продолжительный выходной среднеквадратичный

LXM 05AD17M2, BD17M2, CD17M2 Продолжительный выходной среднеквадратичный

LXM 05AD28M2, BD28M2, CD28M2
Продолжительный выходной среднеквадратичный
ток 15 А

ток 4 А		ток 8 А		ток 15 А							
Номинал	ьный режим р	аботы	Относительный момент стопорения	Номиналь	Номинальный режим работы Относительн момент стопорения			Номиналь	аботы	Относительный момент стопорения	
Ном. момент	Ном. скорость	Ном. мощность	M ₀ /M _{макс} (1)	Ном. момент	Ном. скорость	Ном. мощность	M ₀ / M _{макс} (1)	Ном. момент	Ном. скорость	Ном. мощность	M ₀ / M _{макс} (1)
Н•м	об./мин	Вт	Н•м/Н•м	Н•м	об./мин	Вт	Н•м/Н•м	Н•м	об./мин	Вт	Н•м/Н•м
0.41	6000	260	0.46/1.15								
0.43	6000	270	0.5/1.4								
0.7	3000	220	0.76/2.07								
0.71	6000	450	0.9/1.77								
0.81	3000	250	0.9/2.7								
0.85	1500	130	0.9/2.3								
0.91	4500	430	1.05/2.43								
				1.08	4500	510	1.3/4.73				
1.1	3000	350	1.3/3.18								
				1.1	3000	350	1.3/3.31				
1.2	1500	190	1.3/3.5								
1.3	3000	400	1.4/2.66								
				1.3	3000	400	1.4/3.19				
				1.55	4500	730	1.86/4.61				
1.66	3000	520	1.86/3.4								
1.9	3000	600	2.12/4.57	1.9	3000	600	2.12/5.63				
				1.9	3000	600	2.12/4.14	1.9	3000	600	2.12/6.8
2	1500	300	2.12/5.63								
								2.13	4500	1000	3.1/8.7
				2.4	3000	750	2.8/7.16	2.4	3000	750	2.8/10.3
								2.4	3000	750	2.8/7.38
				2.45	3000	770	3.1/7.81				
								2.55	4500	1200	4.2/9.7
2.63	1500	400	2.8/8.6						, and the second		
								2.9	3000	900	3.4/8.5
								3.1	3000	970	4.2/13
								4	3000	1250	5.3/13
								4	3000	1250	5.3/15.8
								4.5	3000	1400	5.2/14
								4.96	1500	780	5.5/16
								6.73	1500	1100	7.8/19.69
								7.83	1500	1250	9/18.4
								10	1500	1550	12/21

Трехфазное питающее напряжение 200...240 В Сочетания преобразователей и серводвигателей

Сочетания преобразователей Lexium 05A, 05B или 05C и серводвигателей BRH или BSH

Серводвигатели

Преобразователи Lexium 05А и 05В

Трехфазные 200...240 В питающего напряжения со встроенным ЭМС фильтром

LXM 05AD10M3X, BD10M3X

BRH	BSH
(IP 41 или IP 56)	(IP 50 или IP 65)
BRH 0571T	
	BSH 0551T
PPU 0570P	2011 000 11
BRH 0572P	
	BSH 0552T
	BSH 0552P
	BSH 0552M
	D311 0332W
BRH 0573P	
BRH 0574P	
	BSH 0553P
	BSH 0553T
	BSH 0553M
	BSH 0701T
	BSH 0701P
	BSH 0701M
BRH 0851P	
BRH 0851M	
IMI COU FINA	
	BSH 0702P
	BSH 0702T
	BSH 0702M
BRH 0852P	
	BSH 0703P
	BSH 0703T
BRH 0852M	
BRH 0853P	
	BSH 0703M
	BSH 1001T
DDU 0052M	23.110011
BRH 0853M	
	BSH 1001P
BRH 0854M	
BRH 0854P	
	BSH 1002T
DDU 1101D	23.110021
BRH 1101P	
	BSH 1002P
	BSH 1003P
	BSH 1401T
BRH 1102P	
Ditti 17021	DCU 1004D
	BSH 1004P
	BSH 1402T
BRH 1103P	
	BSH 1402P

Номинальный режи	Относительный момент стопорения				
Номинальный момент	Номинальная Номинальная скорость мощность		M ₀ / M _{MAKC}		
Н•м	об./мин	Вт	Н•м/Н•м		
0.41	6000	260	0.46/1.15		
0.43	6000	270	0.5/1.4		
0.64	6000	400	0.76/2.07		
0.71	6000	450	0.9/1.77		
0.81	3000	250	0.9/2.7		
0.85	1500	130	0.9/2.3		
0.91	4500	430	1.05/2.43		
1.1	3000	350	1.3/3.18		
1.2	1500	190	1.3/3.5		
1.3	3000	400	1.4/2.42		
1.3	3000	400	1.4/2.66		
1.36	1500	210	1.4/2.66		
1.9	3000	600	2.12/4.57		
2	1500	300	2.12/5.63		
2.63	1500	400	2.8/8.6		

(1) - M_0 : продолжительный момент стопорения

⁻ М_{макс}: максимальный момент стопорения

LXM 05AD17M3	X, BD17M3X ый выходной среднек	вадратичный ток 8 А		LXM 05AD42M3X, Продолжительный		вадратичный ток 17	A
Номинальный р	ежим работы		Относительный момент стопорения	Номинальный режим работы			Относительный момент стопорения
Номинальный момент	Номинальная скорость	Номинальная мощность	M ₀ / M _{макс}	Номинальный момент	Номинальная скорость	Номинальная мощность	M ₀ /M _{MAKC}
Н•м	об./мин	Вт	Н•м/Н•м	Н•м	об./мин	Вт	Н•м
1.08	4500	510	1.3/4.73				
1.1	3000	350	1.3/3.31				
1.3	3000	400	4.4/0.40				
1.3	3000	400	1.4/3.19				
1.55	4500	730	1.86/4.61				
1.66	3000	520	1.86/5.27				
1.9	3000	600	2.12/5.63				
				1.9	3000	600	2.12/6.8
				2.13	4500	1000	3.1/10.8
2.4	3000	750	2.8/7.16				
				2.4	3000	750	2.8/10.25
2.45	3000	770	3.1/7.81				
				2.55	4500	1200	4.2/13.6
				2.9	3000	900	3.4/8.5
3.1	3000	970	4.2/7.73				
3.16	1500	500	3.4/7.1				
4	3000	1250	5.3/9.2	4	2000	1250	5 2/10 2
				4.4	3000	1400	5.3/18.3 5.5/16
				4.4	3000	1400	5.2/16.2
4.96	1500	780	5.5/11.23	7.0	0000	1700	0.2/10.2
	.000		J. J. T. T. L. J.	6.73	1500	1100	7.8/23.17
				6.9	3000	2200	11.4/23.33
				7.83	1500	1250	9/26
				8.22	1500	1300	9.31/35.7
				9.2	3000	2900	14.4/24.56
				10	1500	1550	12/30.3
				15	1500	2350	19.2/41.94

Трехфазное питающее напряжение 380...480 В Сочетания преобразователей и серводвигателей

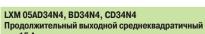
Сочетания преобразователей Lexium 05A, 05B или 05C и серводвигателей BRH или BSH

Серводвигатели

Преобразователи Lexium 05A, 05B и 05C

Трехфазные 380...400 В питающего напряжения со встроенным ЭМС фильтром

BRH	BSH
(IP 41 или IP 56)	(IP 50 или IP 65)
BRH 0571P	
BRH 0572P	
	BSH 0552P
BRH 0573P	
BRH 0574P	
	BSH 0553P
BRH 0851M	
BRH 0851P	
BRH 0852M	
BRH 0852P	
	BSH 0702P
BRH 0853M	
BRH 0854P	
BRH 0854M	
	BSH 0703M
	BSH 0703P
	BSH 1001P
	BSH 1001M
BRH 1101P	
	BSH 1002P
BRH 1102P	
	BSH 1002M
	BSH 1003P
	BSH 1003M
	BSH 1401P
	BSH 1004P
BRH 1103P	
	BSH 1402P
	BSH 1404P
	BSH 1403P
	BSH 1402M
	BSH 1403M
	BSH 1404M
	BSH 2051M


Номинальный режи	Относительный момен стопорения				
Номинальный момент	Номинальная скорость	Номинальная мощность	M ₀ / M _{MAKC} (1)		
Н•м	об./мин	Вт	Н•м/Н•м		
0.41	6000	260	0.46/1.39		
0.64	6000	400	0.76/2.46		
0.81	3000	250	0.9/2.7		
0.87	6000	550	1.05/3		
1.1	3000	350	1.3/3.87		
1.45	6000	910	1.86/4.05		
1.9	3000	600	2.12/5.63		
2.4	3000	750	2.8/8.6		
3.16	1500	500	3.4/7.1		
4.96	1500	780	5.5/13.3		

(1) - M_{o} : продолжительный момент стопорения - $M_{\text{макe}}$: максимальный момент стопорения

LYMATINE DETINA OPTINA
LXM 05AD57N4, BD57N4, CD57N4 Продолжительный выходной среднеквадратичный

	22N4, BD22N ительный выхо		квадратичный		34N4, BD34N тельный выхо		квадратичный		57N4, BD57N тельный вых		квадратичный
Номиналі	Номинальный режим работы Относительный момент стопорения				ный режим ра	аботы	Относительный момент стопорения	Номиналь	ный режим р	аботы	Относительный момент стопорения
Ном. момент	Ном. скорость	Ном. мощность	M ₀ / M _{макс} (1)	Ном. момент	Ном. скорость	Ном. мощность	M ₀ / M _{макс} (1)	Ном. момент	Ном. скорость	Ном. мощность	M ₀ / M _{макс} (1)
Н•м	об./мин	Вт	Н•м/Н•м	Н•м	об./мин	Вт	Н•м/Н•м	Н•м	об./мин	Вт	Н•м/Н•м
1	6000	630	1.3/4.9								
1.45	6000	910	1.86/5.34								
1.8	6000	1150	3.1/9.51	1.8	6000	1150	3.1/7.95				
2.2	6000	1400	4.8/9.3	2	6000	1250	4.2/12				
				2.2	6000	1400	5.3/14.5				
2.4	3000 3000	750 900	2.8/8.75 3.4/7.1								
4.4	3000	1400	5.5/13.92	4.04	4500	1900	5.2/13				
7.7	3000	1400	3.3/10.92	4.58	4500	2150	9/16.7				
6.73	1500	1100	7.8/23.17	5.7	3000	1800	7.8/23.01				
				6.9 7.1	3000 3000	2200 2200	11.4/23.33 9.31/23.47	7.1	3000	2200	9.31/35.7
				7.5	3000	2360	12/18.9	7.5	3000	2360 3400	12/30.3
				15	1500	2350	19.2/47.5	10.8	3000	3400 3900	32.1/63.09 25.4/57.32
				17.2	1500	2700	25.4/68	20.3	1500 1500	3200 3900	25.4/71.7 32.1/95
								28.2	1500	4500	34.4/110

Установочные и диалоговые средства

Простота

Интеграция

Высокий уровень интеграции, компактные размеры позволяют монтировать преобразователи в ряд и дают возможность их работы при окружающих температурах до 50°C без уменьшения номинальной мощности, что позволяет уменьшить размеры шкафов.

Преобразователи небольшой мощности могут монтироваться на DIN-рейку.

Монтаж

Для уменьшения времени монтажа и исключения периодической проверки моментов затяжки применяются пружинные клеммы.

Установка

Благодаря применению датчиков положения SinCos Hiperface® на серводвигателях BRH и BSH, преобразователи Lexium 05 автоматически получают данные от серводвигателя. Параметры серводвигателя не нужно устанавливать вручную.

Меню «Простой запуск» ("Simply Start"), доступное в программном обеспечении PowerSuite, гарантирует, что устройство может начать работать в течение нескольких секунд.

Функция автонастройки Lexium 05 и ее новый алгоритм автоматически определяют оптимальные коэффициенты усиления контуров регулирования в соответствии с механикой установки для различных типов перемещения, включая вертикальные.

Функция осциллографа в программном обеспечении PowerSuite используется, чтобы показать электрические и механические величины в координатных осях. Преобразование в ряды Фурье (FFT – БПФ, быстрое преобразование Фурье) может использоваться для уточненного анализа сигналов от механизма.

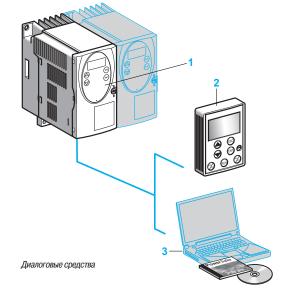
Диалоговые средства

Встроенный терминал с 7-сегментным устройством индикации 1

Преобразователь Lexium 05 снабжен встроенным 7-сегментным устройством индикации, которое используется для установки параметров преобразователя, индикации ошибок и текущего контроля. Это устройство может также использоваться для управления преобразователем в ручном режиме.

Выносной терминал с жидкокристаллическим устройством индикации 2

Этот терминал, доступный как дополнительная опция, может быть размещен на дверце шкафа для выполнения функций текущего контроля и регулирования, а так же для возможности перехода в любой момент в ручной режим управления.


Степень защиты IP 65 позволяет использовать это устройство в неблагоприятной окружающей среде.

Программное обеспечение PowerSuite 3

Программное обеспечение PowerSuite используется для формирования, настройки и отладки координат преобразователя Lexium 05 таким же образом, как и для других приводов Schneider Electric с регулируемой скоростью и пусковых устройств.


Эта программа может использоваться с прямым соединением $\,$ или $\,$ с беспроводной связью $\,$ Bluetooth $\,$ ® $\,$.

См. стр. 60200/4.

Lexium PAC solution

Пример решения на основе контроллера Lexium, управляющего технологическим процессом

Презентация

Предлагаемый контроллер Lexium, управляющий технологическим процессом, представляет решение Schneider Electric для согласования координат и синхронизации.

Это комплексное, экономичное, высокоэффективное решение основано на объединении предлагаемого контроллера перемещений Lexium с устройствами Lexium 05 и Lexium 15.

Применения

Решение на основе контроллера Lexium, управляющего технологическим процессом, специально предназначено для следующих видов применения:

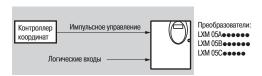
- погрузочно-разгрузочное оборудование (конвейеры, механизмы для штабелирования, накопители и поисковые системы) и перемещающие механизмы (портальные подъемные краны, и т.д.);
- сборочные механизмы (оборудование для монтажа, крепления, и т.д.);
- механизмы для проверки и контроля качества (испытательные машины, и т.д.);
- машины для выполнения операций "на лету" (летучие ножницы, печатание, маркировка, и т.д.).

Контроль и функции управления движением

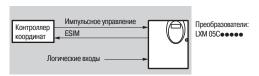
Это решение может использоваться для выполнения стандартного контроля и функций управления движением:

- контроль и сигналы управления до 8 синхронизированных реальных координат с максимальным временем цикла 2 мс для 4 координат и 4 мс для 8 координат;
- контроль скорости и вращающего момента;
- относительное или абсолютное позиционирование;
- использование копируемых профилей для задания координат и программирование управления от переключателя копира;
- функция моделирования координат;
- функция электронного редуктора для скорости и положения;
- линейная и круговая интерполяция (2½D)
- передача ведущей координат через внешний энкодер;
- измерение расстояния и фиксирование положения на быстродействующем (30 мкс) дискретном входе:
- согласование движения позиционирования с заданной частотой вращения (плавное сопряжение).

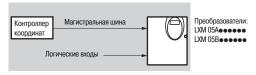
Библиотека пакетов прикладных функций

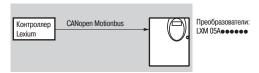

Эта библиотека пакета функций, специально разработанная Schneider Electric, включает общие прикладные функции и таким образом значительно уменьшает время программирования и начальной установки.

Пакеты функций, доступные в библиотеке:

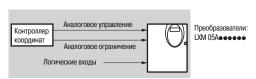

- летучие ножницы
- дисковый нож
- группировка/разгруппировка
- фиксация с управлением вращающим моментом

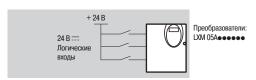
Представление: стр. 61720-EN/2

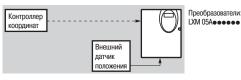

Преобразователи Lexium 05A, 05B и 05C Презентация


Импульсное управление

Импульсное управление и ESIM (имитация энкодера)


Управление по магистральной шине


Управление по шине Motionbus CANopen (см. применение управляющего контроллера Lexium на стр. 61060/13)


Управление по аналоговому входу

Управление с ограничением по аналоговому входу

Обычная работа через логические входы

Работа с замкнутым контуром перемещения через внешний датчик положения

Серия сервоприводов Lexium 05A, 05B и 05С

Преобразователь Lexium 05A: эксплуатационная гибкость архитектуры

Эксплуатационная гибкость, выраженная характеристиками преобразователя Lexium 05A, означает, что он может использоваться с множеством доступных на рынке различных контроллеров координат и интегрироваться в многочисленные архитектурные решения.

Он может также работать автономно, без контроллера координат.

Преобразователь Lexium 05A содержит:

- 1 интерфейс RS 422
- 2 аналоговых входа
- 6 логических входов 24 В, 3 из которых переназначаемы
- 2 переназначаемых логических выхода 24 В
- интерфейсы шины механизма CANopen, CANopen Motionbus и последовательный канал связи Modbus

Преобразователь Lexium 05B: управление через PROFIBUS DP

Характерной чертой преобразователя Lexium 05В является наличие интерфейса шины управления PROFIBUS DP.

В дополнение к этому интерфейсу, преобразователь Lexium 05B может также управляться через интерфейс RS 422 и логические входы-выходы.

Он также имеет интерфейс последовательного канала связи Modbus, позволяющий легкое конфигурирование посредством программного обеспечения PowerSuite.

Преобразователь Lexium 05C: управление через входы-выходы

Преобразователь Lexium 05С идеален для управления через входы-выходы или последовательностью импульсов.

Он содержит много входов-выходов и интерфейсов:

- 1 аналоговый вход
- 6 логических входов 24 В, 5 из которых переназначаемы
- 3 переназначаемых логических выхода 24 В
- 2 интерфейса RS 422, особенностью одного из которых является наличие входа импульсного управления и выхода ESIM (имитации энкодера)

Как и преобразователи Lexium 05A и Lexium 05B, он имеет интерфейс последовательного канала связи Modbus для легкого конфигурирования посредством программного обеспечения PowerSuite.

Возможная архитектура

Преобразователи Lexium 05 разработаны для применения в различных типах архитектуры. Приведенная ниже таблица показывает типы архитектуры, доступной для каждого преобразователя:

Архитектура	Преобразовател	Ib	
	Lexium 05A	Lexium 05B	Lexium 05C
Импульсное управление			
Импульсное управление и ESIM выход			
Управление по магистральной шине			
Управление по шине CANopen Motionbus			
Управление по аналоговому входу			
Управление с ограничением по аналоговому входу			
Обычная работа через логические входы			
Работа с замкнутым контуром перемещения через датчик положения (внешний или встроенный в серводвигатель)			
Возможная а	рхитектура		

Представляем Lexium 05 (продолжение)

Устройство управления перемещениями Lexium 05 Преобразователи Lexium 05A, 05B и 05C

Основные функции

Тип преобразователя			LIVIA OFF	
		LXM 05AeeeF1, LXM 05AeeeM2, LXM 05AeeeM3X, LXM 05AeeeN4	LXM 05BeeeF1, LXM 05BeeeM2, LXM 05BeeeM3X, LXM 05BeeeN4	LXM 05CeeeN2, LXM 05CeeeN4
Средства связи	Встроенные	Modbus		•
•		CANopen, CANopen Motionbus	PROFIBUS DP	-
	Режимы работы		остью, регулирование тока, электрон	ный редуктор (импульсное управлен
		Возврат в исходное положение, от то скорости	чки к точке, отработка графика	-
		Циклическое движение	_	1
	Функции	Автоподстройка, контроль, стопорен	ие преобразование	
	+ ,	Интервал остановуи, быстрый ввод в		I_
	H	* * * * * * * * * * * * * * * * * * * *	I	1
1огические входы 24 В <i>(1)</i> количество и назначение)	Назначаемые входы	3, назначены для следующих функций: разрешение мостового измерителя мощности, функция защиты Power Removal — блокировка преобразователя (отрицательная логика)	6, назначены для следующих функций: останов серводвигателя, функция защиты Power Removal — блокировка преобразователя, конечные выключатели, переключатели исходного положения, быстрый ввод величин перемещений	назначен для функции разрешение мостового измерите мощности
	Переназначаемые входы	3- возможные назначения: переустановка после ошибки/ подтверждение, останов серводвигателя, движение от точки к точке, разрешение движения серводвигателя (вперед или назад), ручное управление перемещением (вперед/назад, быстро/медленно), ограничение скорости, инверсия аналогового задания, начало последовательности движений, конечные выключатели, переключатели исходного положения, быстрый ввод величин перемещений	_	5- возможные назначения: переустановка после ошибки/ подтверждение, останов серводвигателя, движение от точ к точке, разрешение движения серводвигателя (вперед или назад), ручное управление перемещением (вперед/назад, быстро/медленно), ограничение скорости
4 В логические выходы (1) количество и назначение)	Назначаемые выходы	-	2- назначен для следующих функций: ошибка преобразователя, управление контроллером тормоза	-
	Переназначаемые выходы	2- возможные назначения: ошибка преобразователя, готовность преобразователя, блокировка перемещения серводвигателя, ошибка в установленном диапазоне перемещения (скорости), подтверждение остановки, управление встроенным тормозом, ток серводвигателя меньше заданной величины, скорость серводвигателя меньше заданной величины, подтверждение на запрос начала последовательных перемещений, двигатель остановлен	_	3- возможные назначения: ошибка преобразователя, готовность преобразователя, блокировка перемещения серводвигателя, ошибка в установленном диапазонн перемещения (скорости), подтверждение остановки, управление встроенным тормозом, ток серводвигателя меньше заданн величины, скорость серводвигател меньше заданной величины
аналоговые входы количество и назначение)		2, назначен для: задания скорости или тока; ограничений скорости или тока	-	1, назначен для: задания скорост или тока
1нтерфейсы RS 422 количество и назначение)		1, конфигурируемый как: ■ вход электронного редуктора (А/В, Р/D или СW/ССW сигналы) или ■ вход для внешнего энкодера, для замыкания петли обратной связи по перемещению (сигналы А/В) или ■ выход ESIM (имитации энкодера) (сигналы А/В)	1, конфигурируемый как: ■ вход электронного редуктора (А/В или CW/CCW) сигналы или ■ выход ESIM (имитации энкодера) (сигналы А/В)	2, конфигурируемый как: ■ вход электронного редуктора (А/В, Р/D или CW/CCW) сигналы или ■ выход ESIM (имитации энкодера) (сигналы А/В)
Неловеко-машинный интерфейс	Через встроенный терминал с 7-сегментным дисплеем		быстрее/медленнее), автонастройка,	простая установка, индикация

⁽¹⁾ За исключением иным образом определенных, логические входы-выходы могут использоваться в положительной логике (низкий уровень на входе, высокий уровень на выходе) или отрицательной логике (высокий уровень на входе, низкий уровень на выходе).

Преобразователи Lexium 05

Общий обзор функций Lexium 05

Преобразователи Lexium 05 содержат множество функций, необходимых для использования в широком диапазоне промышленных применений.

Существуют два основных семейства функций:

- Стандартные функции регулирования, такие как:
- □ возврат в исходное положение;
- □ ручной режим (JOG);
- □ автонастройка совместной работы преобразователя и серводвигателя.
- Режимы работы:
- □ контроль за перемещением:
- режим от позиционирования;
- режим циклических перемещений;
- режим электронного редуктора (импульсный режим управления положением).
- □ управление скоростью:
- управление скоростью с ограничением ускорения/замедления;
- управление мгновенной скоростью.
- □ управление током:
- регулирование тока.

Возможны два вида работы:

- локальный
- через коммуникационные шины и сети

В локальном режиме:

Параметры преобразователя определяются посредством:

- пользовательского интерфейса
- терминала выносного дисплея
- программного обеспечения PowerSuite

Перемещения затем определяются посредством:

- аналоговых сигналов (± 10 В)
- сигналов типа RS 422 (импульс/направление (P/D), A/B или CW/CCW сигналы)

В этом режиме конечные выключатели и выключатели и исходного положения не управляют преобразователем. Однако, возможно ограничить перемещение посредством назначения логического входа, см. страницы 61068/14 и 61068/16.

Через коммуникационные шины и сети:

Все параметры преобразователя, связанные с режимами работы, могут быть доступны посредством:

- коммуникационных шин и сетей в дополнение к доступу через интерфейс пользователя
- терминала выносного дисплея

Каталожные номера:

стр. 61063/2

■ программного обеспечение PowerSuite

Следующая таблица показывает тип управления и источники величин заданий, доступные для каждого из режимов работы.

Режим работы	Управление		Величина задания подается через
	Через коммуни- кационные шины и сети	Локальное	
Функции регулировани	19		
Возврат в исходное положение			Коммуникационные шины и сети или программное обеспечение PowerSuite
Ручной режим (JOG)			Коммуникационные шины и сети или программное обеспечение PowerSuite или интерфейс пользователя
Автонастройка			Коммуникационные шины и сети или программное обеспечение PowerSuite
Режимы работы			
Режим от точки к точке			Коммуникационные шины и сети или программное обеспечение PowerSuite
Режим циклического движения			Коммуникационные шины и сети или программное обеспечение PowerSuite
Режим электронного редуктора (импульсное управление перемещением)			Импульс/направление (P/D), A/B или CW/ CCW сигналы
Управление скоростью с ограничением			Коммуникационные шины и сети или программное обеспечение PowerSuite
Регулирование тока			Аналоговый вход коммуникационные шины и сети или программное обеспечение PowerSuite
Функция доступна Функция недоступн	a		

стр. 61067/2

version: 1.1

Характеристики:

стр. 61062/2

Представление:

стр. 61060/2

Схемы:

Преобразователи Lexium 05 Функции настройки

Возврат в исходное положение

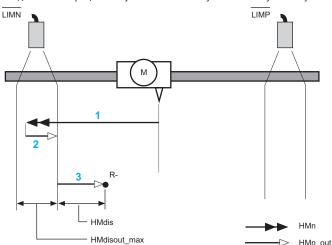
Примечание: доступно с преобразователями Lexium 05A и Lexium 05B.

Перед осуществлением полного перемещения в режиме позиционирования, должна быть выполнена операция возврата в исходное положение.

Возврат в исходное положение состоит в привязке координаты перемещения с заданным механическим положением.

Тогда это положение становится исходной точкой для любого последующего движения по координате.

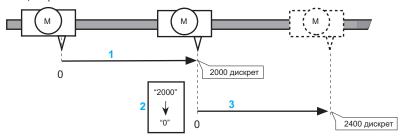
Возврат в исходное положение проводится посредством:


- немедленной записи текущего положения в регистр;
- движения до датчика исходного положения

Возврат в исходное положение с поиском датчиков

Возможны четыре типа возврата в исходное положение с движением к датчикам:

- возвращение до конечного выключателя, "ЦММ";
- возвращение до + конечного выключателя, "ПМР";
- возвращение до соприкосновения с контактом "REF" при начальном движении с отрицательным направлением вращения;
- возвращение до соприкосновения с контактом "REF" при начальном движении с положительным направлением вращения.


Эти движения возвращения могут быть выполнены с учетом или без учета импульса "Нулевой метки".

Режим возвращения в исходное положение: пример с конечным выключателем и сбросом в исходное состояние по фронту сигнала датчика

Принудительное возвращение в исходное положение

Принудительное возвращение в исходное положение состоит из установки текущего положения двигателя как новой исходной точки, к которой привязаны все последующие данные позиционирования.

Режим принудительного возвращения в исходное положение

Параметры режима принудительного возвращения в исходное положение

Параметры режима принудительного возвращения в исходное положение передаются через коммуникационные шины и сети, или с помощью программного обеспечения PowerSuite.

После включения питания величина перемещения равна 0 ...

- Начало движения к исходной точке: серводвигатель позиционируется с использованием относительного перемещения 2000 дискрет
- Принудительное возвращение к положению 0, путем записи фактического положения, выраженного в пользовательских единицах
- 3 Инициирование команды движения на 2400 дискрет абсолютного перемещения. Заданное перемещение составляет 2400 дискрет (если принудительный возврат (шаг 2) не был бы выполнен, то заданное перемещение составило бы 4400 дискрет (2000 + 2400))

Представление: стр. 61060/2

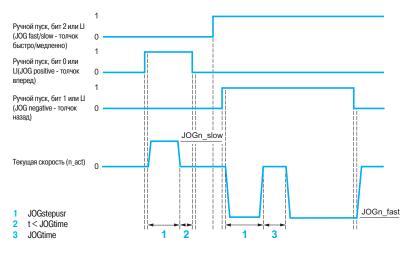
Характеристики: стр. 61062/2 Каталожные номера: стр. 61063/2

Schneider

Размеры: стр. 61067/2

Схемы: стр. 61068/2

Преобразователи Lexium 05 Функции настройки


Ручной режим работы (JOG)

Примечание: доступен в преобразователях Lexium 05A, Lexium 05B и Lexium 05C.

Этот режим разрешает ручное изменение координат. Движение может быть выполнено в один шаг или непрерывно, на постоянной скорости. Доступны две скорости движения (медленная или быстрая). Используются различные параметры для формирования ручного движения.

Величина уставки

Параметры передаются через промышленную шину, программное обеспечение PowerSuite или пользовательский интерфейс преобразователя.

Настройка механизма в ручном режиме (JOG - толчок)

Когда высокий логический уровень приложен к логическому входу "JOG positive" или "JOG negative", или положительный фронт бита от управляющего слова (бит 0, бит 1), шаг перемещения выполняется на низкой или высокой скорости. Выбор между низкой и высокой скоростью определяется логическим уровнем входа "JOG fast/slow" или логическим уровнем бита управляющего слова (бит 2).

Автонастройка совместной работы преобразователя и серводвигателя

Примечание: доступна в преобразователях Lexium 05A, Lexium 05B и Lexium 05C.

Функция автонастройки, встроенная в преобразователь, позволяет автоматически настраивать параметры управления преобразователем, которые будут применены после первоначальной установки.

Эта функция активизируется посредством:

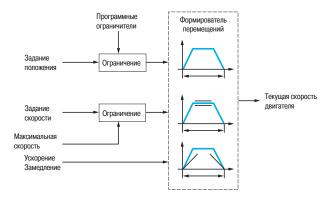
- пользовательского интерфейса;
- терминала встраиваемого дисплея;
- программного обеспечения PowerSuite.

Эта процедура требует, чтобы серводвигатель был соединен со своим механизмом. Дополнительные параметры могут использоваться для:

- определения механической жесткости в зависимости от типа соединения;
- ограничения амплитуды и направлений перемещений, выполняемых во время стадии автонастройки.

Программное обеспечение PowerSuite также обеспечивает отображение на экран настроек управления преобразователем для их выбора в соответствии с техническими требованиями.

Преобразователи Lexium 05 Режимы работы


Режим позиционирования (от точки к точке)

Примечание: доступен в преобразователях Lexium 05A и Lexium 05B.

Этот режим, называемый также PTP (Point To Point - от точки к точке), используется, чтобы переместить координату из положения A в положение B. Движение может быть абсолютным: состоит в выражении положения B относительно исходного положения (эта координата должна быть ранее определена), или относительным: в этом случае движение выполнятся относительно текущего положения координаты (A). Движение выполняется в соответствии с параметрами ускорения, замедления и скорости.

Величина уставки

Величина уставки передается через коммуникационные шины и сети или программное обеспечение PowerSuite.

Режим позиционирования, абсолютные и относительные перемещения

Возможные применения

Контроллер перемещений для согласованных координат или программируемый логический контроллер могут управлять несколькими координатами через коммуникационные шины и сети. Этот способ часто используется при:

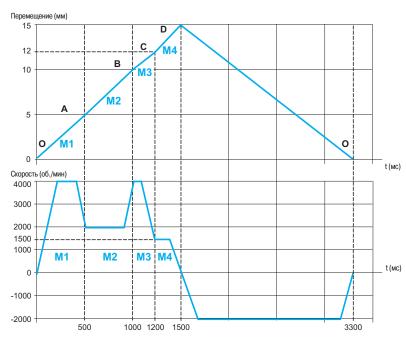
- обработке материалов;
- автоматизированном контроле.

Для мультикоординатных приложений, требующих быстрых и точных циклов, мы рекомендуем использование режима управления циклом движения, см. страницу 61061/6.

Schneider BElectric

Преобразователи Lexium 05 Режимы работы

Motion sequence mode


Примечание: доступен в преобразователях Lexium 05А.

Этот режим используется для программирования параметров, необходимых для реализации быстрых перемещений. Он позволяет выполнять абсолютные и относительные перемещения по координате от точки A к точке B в соответствии с заранее заданным перемещением, а затем от точки B к точке C в соответствии с другим похожим перемещением. Перемещение выполняется в соответствии с выбранным ускорением, замедлением и ограничениями скорости. Также возможно выбрать тип задания цикла для различных перемещений.

Примеры задания цикла перемещения

Перемещение, представленное ниже, состоит из 5 ступеней параметризованных перемещений:

- Перемещение 1 применено для движения от начальной точки О к точке А за 500 мс
- Перемещение 2 применено для движения от точки А к точке В за 500 мс
- Перемещение 3 применено для движения от точки В к точке С за 200 мс
- Перемещение 4 применено для движения от точки **С** к точке **D** за 300 мс
- Перемещение 5 применено для движения от точки **D** к начальной точке **O** за 1800 мс с отрицательной скоростью

Пример движения, выполненного с использованием 5 шагов перемещения

Примечание: также возможно удерживать координату в заданном положении (при нулевой скорости) между двумя шагами перемещения.

Возможные применения

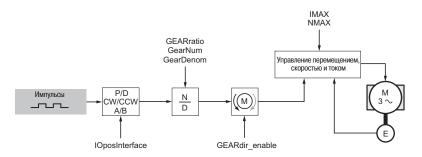
Этот режим используется для приложений требующих быстрого, точного управления циклами и где перемещения совершаются на короткие расстояния:

- обработка материалов
- автоматический контроль
- штамповка
- сверление, и т.д.

Преобразователи Lexium 05 Режимы работы

Режим электронного редуктора

(режим импульсного управления перемещениями)


Примечание: доступен в преобразователях Lexium 05A, Lexium 05B и Lexium 05C.

В этом режиме устанавливается взаимосвязь ведущий/ведомый между несколькими преобразователями Lexium 05 или между преобразователем Lexium 05 и внешним ведущим сигналом (внешний датчик положения A/B, сигналы импульс/направление (P/D)).

Этот режим используется для управления перемещениями посредством последовательности импульсов (импульс/направление (P/D) или CW/CCW сигналы в зависимости от преобразователя) посылаемых контроллером координат (программируемым логическим контроллером, контроллером перемещений, цифровым контроллером и т.д.).

Преобразователи Lexium 05 содержат электронное понижающее соотношение, делающее возможным адаптировать частоту последовательности импульсов к частоте на входе преобразователя. Это означает, что будет использоваться полный диапазон скорости серводвигателя.

Это понижающее соотношение, которое может быть как фиксированным, так и переменным, определяется параметрами "Gearnum" и "GearDenom" преобразователя Lexium 05. Соотношение и направление действующих параметров может быть доступно в динамике посредством коммуникационных шин и сетей.

Режим электронного редуктора

Возможные применения

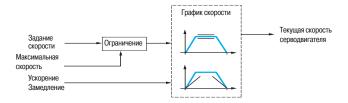
- Транспортировка
- Конвейерный транспорт
- Пакетирование
- Мерный рез
- Применение в областях производства пластических масс и волокнистых материалов

Schneider

version: 1.1

Преобразователи Lexium 05 Режимы работы

Режим управления скоростью с ограничением ускорения/замедления


Примечание: доступен в преобразователях Lexium 05A и Lexium 05B.

В этом режиме работы задание скорости устанавливается с учетом ограничения ускорения/ замедления, которые могут настраиваться с помощью параметров. Задание скорости может быть изменено во время движения. Возможно также ограничение тока.

Управление перемещением, представленное в фоновом режиме, позволяет гибко синхронизировать две координаты, имеющиеся в режиме управления скоростью, и позволяет на лету вступать в действие режиму управления перемещением.

Величина задания

Величина задания передается через коммуникационную шину и сети, или посредством программного обеспечения PowerSuite.

Режим управления скоростью с ограничением ускорения/замедления

Возможные применения

Этот режим преимущественно используется при неограниченных координатах.

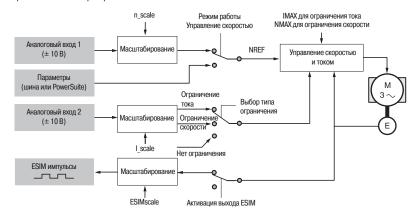
Примеры включают управление поворотным столом, применение в печатном деле, маркировке.

Управление мгновенной скоростью

Примечание: доступен в преобразователях Lexium 05A, Lexium 05B и Lexium 05C.

В этом режиме преобразователь Lexium 05 может применяться при аналоговом выходе контроллера перемещения. Он соответствует техническим требованиям ко всем остальным быстродействующим регуляторам скорости.

Величина задания


Величина задания передается:

- через аналоговый вход 1 или параметр для преобразователей Lexium 05A и Lexium 05C
- через параметр для преобразователя Lexium 05B

Скорость и ток передаются:

- через аналоговый вход 2 или параметр для преобразователя Lexium 05A
- через параметр для преобразователей Lexium 05B и Lexium 05C

Примечание: переназначаемый логический вход может также применяться для ограничения скорости, хотя это применимо только к преобразователям Lexium 05A и Lexium 05C.

Режим непрерывного управления скоростью с ограничением тока посредством аналогового входа 2

Использование аналогового выхода контроллера перемещений

Обратная связь по координате перемещения может подаваться на контроллер координат (программируемый логический контроллер, контроллер перемещений и т.д.) посредством ESIM (имитации энкодера) на выходе интерфейса RS422.

Преобразователи Lexium 05 Режимы работы

Управление текущей скоростью (продолжение)

Возможные применения

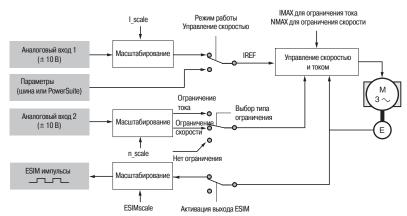
- Транспортные операции
- Сборочные операции
- Рез на мерные длины
- Намотка и размотка

Управление током

Примечание: доступно в преобразователях Lexium 05A Lexium 05B и Lexium 05C.

Управление током необходимо для контроля крутящего момента серводвигателя. Этот режим, добавляется к другим режимам в те периоды работы механизма, когда решающим является управление крутящим моментом.

Величина задания


Величина задания передается:

- через аналоговый вход 1 или параметр для преобразователей Lexium 05A и Lexium 05C
- через параметр для преобразователя Lexium 05B

Ограничения скорости и тока передаются:

- через аналоговый вход 2 или параметр для преобразователя Lexium 05A
- через параметр для преобразователей Lexium 05B и Lexium 05C

Выход ESIM (имитация энкодера) на интерфейсе RS 422 может быть использован для передачи перемещения и скорости серводвигателя на контроллер координат (программируемый логический контроллер, цифровой контроллер и т.д.).

Режим управления током с ограничением скорости посредством аналогового входа 2

Возможные применения

- Применение в автосборочном производстве (механизмы фиксации инструментов)
- Специальные агрегаты

Другие функции

- Контрольные функции:
- □ мониторинг текущего состояния в режиме перемещений
- □ слежение за сигналами координат
- 🗆 слежение за внутренними сигналами, характерными для преобразователя
- □ слежение за коммутацией
- □ слежение за передачей информации в коммуникационных шинах и сетях (распространяется только на преобразователи Lexium 05A и Lexium 05B
- Ввод разнообразных масштабирующих коэффициентов
- Настройка датчика перемещений
- Инициирование сигнала STOP
- Включение функции быстрого останова (Quick-Stop)
- Инициализация торможения двигателя посредством контроллера торможения HBC (Holding Brake Controller)
- Изменение направления вращения двигателя
- Считывание величин с аналогового входа
- Установление логики сигналов
- Возможность замещения датчика положения серводвигателя на внешний датчик положения для замыкания контура управления перемещением (применяется только на преобразователе Lexium 05A). Эти функции могут быть включены и параметризованы посредством:
- Логических входов/выходов, некоторые из которых переназначаемы (распространяется только на преобразователи Lexium 05A и Lexium 05C)
- Коммуникационных шин и сетей (распространяется только на преобразователи Lexium 05A и Lexium 05B)
- Программного обеспечения PowerSuite
- Пользовательского интерфейса преобразователя

9

Эксплуатац	ционные хара	ктеристики		
Соответствие ста				Преобразователи Lexium 05 спроектированы в соответствии со строжайшими международными стандартами и рекомендациями, относящимися к электротехническому промышленному оборудованию для управления (МЭК, EN), включая низковольтное, МЭК/EN 61800-5-1, МЭК/EN 50178, МЭК/EN 61800-3 (Защищенность по ЭМС от наведенных и излучаемых электромагнитных помех и по собственным излучениям)
	Защищенность по ЭГ	ис		МЭК/EN 61800-3, условия эксплуатации 1 и 2 МЭК/EN 61000-4-2, уровень 3 МЭК/EN 61000-4-3, уровень 3 МЭК/EN 61000-4-4, уровень 4 МЭК/EN 61000-4-5, уровень 3
	Наведенное			МЭК/EN 61800-3, условия эксплуатации 1 и 2,категории С2, С3
	и излучаемое ЭМС, выделяемое преобразователями	LXM 05••••P1 LXM 05••••M2 LXM 05••••N4		EN 55011, класс А, группа 2, IEC/EN 61800-3, категория С3 С дополнительным ЭМС фильтром (1): ■ EN 55011, класс А, группа 1, МЭК/EN 61800-3, категория С2 ■ EN 55011, класс А, группа 2, МЭК/EN 61800-3, категория С3
		LXM 05••••M3X		С дополнительным ЭМС фильтром (1): ■ EN 55011, класс A, группа 1, МЭК/EN 61800-3, категория C2 ■ EN 55011, класс A, группа 2, МЭК/EN 61800-3, категория C3
Маркировка С €				Преобразователи маркированы С € в соответствии с европейскими директивами по низковольтному оборудованию (73/23/EEC и 93/68/EEC) и ЭМС (89/336/EEC)
ертификация изделия			UL (США), cUL (Канада)	
степени защиты			MЭK/EN 61800-5-1, MЭK/EN 60529	
		LXM 05 • • • • • F1 LXM 05 • • • • • M2 LXM 05 • • • • M3X LXM 05 • • • • N4		IP 41, при накрытии сверху защитным кожухом IP 20, после снятия защитного кожуха, см. стр. 61070/2
Устойчивость к в	СТОЙЧИВОСТЬ К ВИБРАЦИИ LXM 05●●●●F1 LXM 05●●●●M2 LXM 05●●●●M3X LXM 05●●●●N4			В соответствии с MЭK/EN 60068-2-6: 1.5 мм. двойная амплитуда от 3 Гц до 13 Гц 1 g (9.8 м/c2) от 13 Гц до 150 Гц
Сопротивление у	опротивление ударной нагрузке LXM 05●●●●F1 LXM 05●●●●M2 LXM 05●●●●M3X LXM 05●●●●N4			В соответствии с MЭK/EN 61131 параграф 6.3.5.2 15 g в течение 11 мс согласно MЭK/EN 600028-2-27
LXM 05••••N4 Максимальное загрязнение LXM 05••••F1 ркружающей среды LXM 05••••M2 LXM 05••••M3X LXM 05••••N4		LXM 05••••M2 LXM 05••••M3X		Степень 2 согласно МЭК/EN 61800-5-1
Условия эксплуа	тации	LXM 05 •• •• F1 LXM 05 •• •• M2 LXM 05 •• •• M3X LXM 05 •• •• N4		МЭК 60721-3-3, категория 3С1
Относительная в	лажность			В соответствии с МЭК 60721-3-3, категория ЗКЗ, от 5% до 93%, без конденсации
Температура окр вокруг устройства	ужающего воздуха	Эксплуатация	°C	0+50 Температурное снижение номинальной мощности и ограничения: см. рекомендации по монтажу стр. 61070/2
		Хранение	°C	-25+70
Тип охлаждения		LXM 05 D10F1 LXM 05CU70M2, D10M2 LXM 05 D10M3X		Естественная конвекция
	LXM 05●D17F1, ●D28F1 LXM 05●D17M2, ●D28M2 LXM 05●D17M3X, ●D42M3X LXM 05●●●N4			Вентилятор
Максимальная р	абочая высота над	уровнем моря	М	1000 без снижения мощности вплоть до 2000 при следующих условиях: ■ максимальная температура 40°C ■ монтажное расстояние между преобразователями > 50 мм ■ защитный кожух снят
Рабочее положение Максимальный постоянный угол по отношению к нормальному вертикальному положению монтажа			10° 10° 11° 11° 11°	

⁽¹⁾ См. таблицу на стр. 61065/3 для проверки допустимых длин кабеля.

Характеристики модул	ияции						
Частота модуляции		кГц	4 или 8 в зависимости от хар и 61851/2	актеристики и подключаемого серво	одвигателя: см. стр. 61841/2		
Характеристики элект	роэнергии						
Источник электропитания	Напряжения	В	100 - 15%120 + 10% однофазное для LXM 05●●●●F1 200 - 15%240 + 10% однофазное для LXM 05●●●●M2 200 - 15%240 + 10% трехфазное для LXM 05●●●●M3X 380 - 15%480 + 10% трехфазное для LXM 05●●●●N4				
	Частота	Гц	50 - 5%60 + 5%				
	Динамическое перенапряжение		Категормя перенапряжения	III			
	Пусковой ток	Α	< 60				
	Ток утечки	мА	< 30				
Внешний источник питания	Входное напряжение	В	24 (-15/+20%)				
24 В (не предусмотрено) (1)	Входной ток (без нагрузки)	Α	1				
(по продустотропо) (1)	Пульсации		≤ 5%				
Сигнализация			Светящийся светодиод индицирует наличие напряжения на преобразователе				
Выходное напряжение			Максимальное трехфазное напряжение равно линейному питающему напряжению				
Электрическая изоляция			Между силовыми и управляющими цепями (входы, выходы, источники питания)				
Характеристики соеди	инительного провода		'				
Рекомендуемый тип провода для	я монтажа в кожух			Одножильный МЭК провод, температура окружающей среды 45°C, медь 90°C XLPE/EPR или медь 70°C ПВХ			
Характеристики подкл	ІЮЧЕНИЯ (клеммы для исто	чника пита	ния, шин постоянного то	ока и серводвигателя)			
Клеммы преобразователя			R/L1, S/L2, T/L3 (источник питания)	РА/+, РВІ, РВе (внешний тормозной резистор)	U/T1, V/T2, W/T3 (серводвигатель)		
Максимальное сечение проводников и затягивающий момент для источника питания,	LXM 05•D10F1 LXM 05CU70M2, •D10M2 LXM 05•D10M3X		2.5 мм² (AWG 14) 0.8 Н•м	2.5 mm² (AWG 14) 0.8 H•m	См. характеристики VW3 M5 10 ● R ● ● ● и VW3 M5 30 ● R ● ● ● проводо		
тормозного резистора, шины постоянного тока и серводвигателя.	LXM 05•D17F1, •D28F1 LXM 05•D17M2, •D28M2 LXM 05•D17M3X, •D42M3X LXM 05•D14N4, •D34N4		6.0 mm² (AWG 10) 1.2 H•m	6.0 мм² (AWG 10) 1.2 Н•м	на стр. 61841/18 и 61851/27		
	LXM 05●D57N4		16.0 мм² (AWG 6) 2.2 Н•м	16.0 мм² (AWG 6) 2.2 Н•м			

⁽¹⁾ Пожалуйста, справляйтесь с нашим каталогом для специалистов «Источники питания и преобразователи».

version: 2.1

	сигналов управления				
Тип преобразователя			LXM 05A•••••	LXM 05B•••••	LXM 05C••••
Защита	Входы		От изменения полярности		
	Выходы		От коротких замыканий		
Электрическая связь			Наличие электрической свя	язи на 0 B 	
24 B				д приемник/выход источник) или с ельная логика установлена по умо	отрицательная логика (вход источник/
логические входы-выход	foi		выход приемник). Положит	ельная логика установлена по умо.	ичанию
Логические входы					
Тип			24 В логические входы г	положительной (приемник) или отр	оицательной (источник) логики
Количество			6, из которых 3 переназнача см. стр. 61068/14	аемы, 4	6, из которых 3 переназначаеми см. стр. 61068/14
Источник питания		B ===	24		
Период дискретизации		мс	0.25		
Противодребезговая фи	льтрация	мс	1		
Положительная логика (г	приемник)			пи вход не подключен, состояние 1 ствуют стандарту МЭК/EN 61131-2	
Отрицательная логика (и	источник)		Состояние 0, если >19 B, и	лли вход не подключен, состояние	1, если < 9 В
Входы защиты			_		
Гип			Входы для функции защить	o Power Removal	
Количество			2 (PWRR_A, PWRR_B)		-
Источник питания		В	24		·
Фильтрация дребезга		мс	1		
Время срабатывания		мс	≤ 10		
Положительная логика (г	приемник)			пи вход не подключен, состояние 1 ствуют стандарту МЭК/EN 61131-2	
Логические выходы					
Тип			24 В == логические выходы	ы положительной (источник) или от	грицательной (приемник) логики
Количество			2, переназначаемые, см. стр. 61068/14	2	3, переназначаемые, см. стр. 61068/14
Выходное напряжение		В	≤ 30, в соответствии со ста	ндартом MЭK/EN 61131-2	
Период дискретизации		мс	1		
Максимальный отключа	ющий ток	мА	50		
Падение напряжения		В	1 (при нагрузке 50 мА)		
Аналоговые входы					
Тип			±10 B differential analog inp	uts	
Разрешающая способно	сть	бит	14		
Количество			2 (ANA 1+/ANA 1-, ANA 2+/ANA 2-)	-	1 (ANA 1+/ANA 1-)
Входное сопротивление		кОм	≥ 10		
Период дискретизации		мкс	250		
Абсолютная ошибка			Менее ±1% при 250С, мен	ee ±2% сверх интервала рабочих т	емператур
Линейность			Менее ±0.5%		

Тип преобразователя			LXM 05A	LXM 05B	LXM 05C••••		
Сигналы импульс/направ.	пение (P/D), A/B, CW/CCW						
Гип			Канал связи RS 422				
Количество			1 интерфейс для сигналов A/B, CW/CCW	1 интерфейс для сигналов P/D, A/B	2 интерфейса для сигналов P/D, A/B, CW/CCW		
Диапазон в обычном режиме		В	-7+ 12				
Входное сопротивление		кОм	5				
Частота входного сигнала	Импульс/направление (P/D)	кГц	≤ 400				
	A/B	кГц	≤ 400				
	CW/CCW	кГц	≤ 400	-	2 интерфейса для сигналс		
Выходные сигналы ESIM (имитации энкодера)		,				
Логический сигнал			Канал связи RS 422				
Выходная частота		кГц	≤ 400				
Сигналы обратной связи д	цатчика положения серводвигател	19					
Напряжения	Источник питания датчика положения	В	+ 10/100 MA				
	Входные сигналы SinCos	В	1 V _{ss} при смещении 2.5 В 0.5 V _{ss} при 100 кГц				
Входное сопротивление		Ом	120				
Характеристики безо	опасности функционирован	ия					
Тип преобразователя			LXM 05A•••••	LXM 05B	LXM 05C••••		
Защита	Механизма		останов и/или предотвращает серводвигателя в соответстви	Функция защиты ("Power Removal" (PWR)), которая форсирует останов и/или предотвращает непреднамеренную работу серводвигателя в соответствии со стандартом ISO 13849-1, уровень производительности "d" (PL d), и стандартом МЭК/EN 61800-5-2			
	Процесса в системе		Функция защиты ("Power Remoctanoв м/или предотвращает серводвигателя в соответстви уровень SIL2 и стандартом МЭ	-			

Представление: стр. 61060-EN/2 Функции: стр. 61061/2 Каталожные номера: стр. 61063/2 Размеры: стр. 61067/2 Схемы: стр. 61068/2

5

version: 2.1

Упровление от стану предоставия об предоставия предоставия от доли в верхите в предоставия об предоставия предос	•	Управление сетью	•	
Муранение селью Сокроть порядаем Сокроть порядаем Сокроть порядаем Сокроть порядаем Сокроть порядаем Сокроть порядаем В 25 байнуй, для шам дажной автомы до 500 мм В 25 байнуй, для шам дажной автомы до 500 мм В 25 байнуй, для шам дажной автомы до 500 мм В 25 байнуй, для шам дажной автомы до 500 мм В 25 байнуй, для шам дажной автомы до 500 мм В 25 байнуй, для шам дажной автомы до 50 мм В 25 байнуй для шам дажной автомы до 50 мм В 25 байнуй для шам дажной автомы до 50 мм В 25 байнуй для шам дажной автомы до 50 мм В 25 байнуй для шам дажной автомы до 50 мм В 25 байнуй для шам дажной автомы дахной автомы до 50 мм В 25 байнуй для шам дажной автомы дажной автомы до 50 мм В 25 мм В 25 байнуй для шам дажной автомы	труктура	Управление сетью	RJ45 (маркированный CN4) или пружинные клеммы (м	
Скорость геродами		<u> </u>		аркированные СМТ)
В 50 сбитус для выше дамной аткить, до 1000 м. В 260 сбитус для выше дамной аткить, до 1000 м. В 260 сбитус для выше дамной аткить, до 1000 м. В 260 сбитус для выше дамной аткить, до 1000 м. В 260 сбитус для выше дамной аткить, до 1000 м. В 100 стить для выше дамной аткить, до 1000 м. В 100 стить для выше дамной аткить, до 1000 м. В 100 стить для выше дамной аткить, до 1000 м. В 100 соответствуют режимам DSP 402 (управления режимам DSP		Скорость передачи	Подчиненное устройство	
Полнос согротивление основней нагружил лични встроено в преобразователь и допускает отключей обработки двежью. РОО (Роская Баб Обработки двежью) — 3 обработки двежью у преобразователь и допускает отключей обработки двежью обработки двежью у преобразователь и допускает отключей обработки двежью у преобразователь и допускает отключей обработки двежью обработки двежью обработки двежью обработки двежью обработки двежью обработки двежной обра			■ 50 кбит/с для шин длиной вплоть до 1000 м ■ 125 кбит/с для шин длиной вплоть до 500 м ■ 250 кбит/с для шин длиной вплоть до 250 м ■ 500 кбит/с для шин длиной вплоть до 100 м	мента длиннее 0.3 м
ревисы РОО (Ртосова Data Objects — obsection of Space Consection		Адрес (идентификатор узла)	1 - 127, конфигурируется через терминал дисплея или	программное обеспечение PowerSuite
В 7 РОО соответствуют резимеми DSF 402 (управление пределение и резимен и резимен и резимен проботом (правление перемещением и резимен проботом (правление перемещением)		Поляризация	Полное сопротивление оконечной нагрузки линии встр	оено в преобразователь и допускает отключение
Преобразование РОО Преобразование РОО П комфетурирувмый РОО П комфетурирурмый РОО П ко	Сервисы		■ 3 PDO соответствуют режимам DSP 402 (управление перемещением и режимы отработки графиков скорости)	■ 2 PDO соответствуют режимам DSP 402
Количество SDO (Sendeo Data Objects — объекты даянных серемса) Визо заданный объект SDO: ■ 2 передага SDO ■ 1 передага SDO ■ 2 передага SDO ■ 3 передага SDO ■ 4 передага SUD		Режимы PDO	по времени, дистанционно запрашиваемый, синхронный (циклический), синхронный	Синхронный (циклический)
— объекты данных сервиса) ■ 2 передрая SDO ■ 1 прием SDO Ситкал аварии Есть Профиль СА DSP 402: CNNopen "Device Profile Drives and Motion Control" Ирианностика ОК DSP 402: CNNopen "Device Profile Drives and Motion Control" Управлением Управлением и сохростью Управлением Контроль связи Защита в узлак ветвлении, тактовые импульсы Управлением Вайл описания С помощью светодиодов 2 светодиода: RUN («туск») и ERROR («ошибка») на встроенном 7- сегментном терминале Индириация индеремение еда для в всего рада, поставляется на компакт-диске с документацией. Этог файл оздержит описание гараметров преобразователя. Протокол Modbus (преобразователи LXM 05Ae=e=e=e, LXM 05Be=e=e=e, LXM 05Ce=e=e) RA5 (карворованный СМ) Протокол Modbus (преобразователь LXM 05Ae=e=e, LXM 05Be=e=e=e, LXM 05Ce=e=e) RA5 (карворованный RS 485 Режим передачи RTU Скорость передачи Конфигуриргется с помощью терминала дисплея или ПО PowerSuite:		Преобразование PDO	1 конфигурируемый PDO	-
Профиль			■ 2 прием SDO	■ 1 прием SDO
Управление перемещением и схоростью Управление перемещением Контроль связи Защита в узлах ветвления, тактовые имплульсы 2 светодиода: RUN (чтуск-) и ERROR («ошибка-) на встроенном 7-сегментном терминале Индикацие неисправности Полива дичагностика для помощи ПО Ромег Suite Диагностика Один файл с расширением еds для воего ряда, поставляется на компакт-диске с документацией. Этот файл сорержит отиксание параметров преобразователя. Протокол Modbus (преобразователи LXM 05Ae••••, LXM 05Be••••, LXM 05Ce••) Труктура Соеднитель Протокол Modbus (преобразователи LXM 05Ae••••, LXM 05Be••••, LXM 05Ce••) Труктура Соеднитель Протокол Модразователи LXM 05Ae••••, LXM 05Be••••, LXM 05Ce••) Протокол Модразователи LXM 05Ae•••, LXM 05Be•••, LXM 05Ce••) Труктура Соеднитерь Конфигурируется с помощью терминала дисплея или ПО Ромег Suite: В бит, сметроль неетвлести, 1 стотовый бит; В бит, сметроль неетвлести, 1 стотовый бит; В бит, сметроль неетвлести, 1 стотовый бит; В бит, свя контроль ченности, 2 стотовых бит; В бит, свя контроль ченности, 2		Сигнал аварии	Есть	
Варитностика Спомощью светодиодов Защита в узлях ветвления, тактовые импульсы		Профиль	· · · · · · · · · · · · · · · · · · ·	1
Индижация неисправности Полная диагностика при помощи ПО РомеrSuite Один файл с расширением еds для всего ряда, поставляется на компакт-диске с документацией. Этот файл содержит описание параметров преобразователя. Протокол Modbus (преобразователи LXM 05A • • • • • • , LXM 05B • • • • • , LXM 05C • • • • •) Протокол Modbus (преобразователи LXM 05A • • • • • , LXM 05B • • • • , LXM 05C • • • •) Протокол Modbus (преобразователи LXM 05A • • • • • , LXM 05B • • • • , LXM 05C • • • •) Протокол Modbus (преобразователи LXM 05A • • • • • , LXM 05B • • • • , LXM 05C • • • •) Протокол Modbus (преобразователи LXM 05A • • • • • , LXM 05B • • • • , LXM 05C • • • •) Протокол Modbus (преобразователи LXM 05A • • • • , LXM 05B • • • • , LXM 05C • • • •) Протокол Modbus (преобразователи LXM 05A • • • , LXM 05B • • • , LXM 05B • • • , LXM 05C • • • •) Протокол Modbus (преобразователи LXM 05A • • • , LXM 05B • • • , LXM 05B • • , LXM 05B •		Контроль связи		эприменто порошещинием
Протокол Modbus (преобразователи LXM 05A • • • • • • LXM 05B • • • • • • LXM 05C • • • • • • •) Туруктура Соединитель Соединитель Соединитель Соединитель Соединитель Режим передачи RTU Скорость передачи Конфигурируется с помощью терминала дисплея или ПО PowerSuite: 9600 бит/с, 19,2 кбиг/с или 38,4 кбиг/с для последовательных соединений до 400 м Конфигурируется с помощью терминала дисплея или ПО PowerSuite: 8 бит, контроль четности, 1 стоповый бит; 8 бит, без контроля четности, 1 стоповый бит; 7 без контроля четности, 1 стоповый бит; 8 бит, без контроля четности, 2 стоповых бита Нет полных сопротивлений поляризации Они должны поставляться с системой соединений (например, с ведущим устройством) Количество преобразователей Максимально 31 преобразователь Адрес От 1до 247 конфитурируются с помощью терминала дисплея или ПО Оервисы Сообщения Чтение регистров хранения (03), не более 63 слова Чтение динтификатора устройства (43) Диагностика (08) Контроль связи Контроль связи Контроль связи Контроль связи	Д иагностика	С помощью светодиодов	Индикация неисправности	роенном 7-сегментном терминале
Структура Соединитель Дизический интерфейс 2-проводной, многоточечный RS 485 Режим передачи RTU Скорость передачи Формат Конфигурируется с помощью терминала дисплея или ПО РомегSuite: 9600 бит/с, 19,2 кбит/с или 38,4 кбит/с для последовательных соединений до 400 м Конфигурируется с помощью терминала дисплея или ПО РомеrSuite: 8 бит, контроль четности, 1 столовый бит; 8 бит, контроль четности, 1 столовый бит; 8 бит, без контроля четности, 1 столовый бит; 8 бит, без контроля четности, 1 столовый бит; 8 бит, без контроля четности, 2 столовых бита Поляризация Нет полных сопротивлений посивлений (например, с ведущим устройством) Количество преобразователей Максимально 31 преобразователь Адрес От 1до 247 конфигурируются с помощью терминала дисплея или ПО Сервисы Сообщения Чтение регистров хранения (03), не более 63 слов Запись одного регистра (06) Запись нексольких регистров (16), не более 61 слова Чтение/делись нексольких регистров (23), не более 63/59 слов Чтение идентификатора устройства (43) Диатностика (08) Контроль связи Может быть активирована функция контроля (защита узлов ветвления) Период между запусками может устанавливаться между 0.1 с и 10 с	Файл описания			
Физический интерфейс 2-проводной, многоточечный RS 485 Режим передачи Конфигурируется с помощью терминала дисплея или ПО PowerSuite: 9600 бит/с, 19,2 кбит/с или 38,4 кбит/с для последовательных соединений до 400 м Формат Конфигурируется с помощью терминала дисплея или ПО PowerSuite: 8 бит, контроль ченчости, 1 стоповый бит; 8 бит, контроль ченчости, 1 стоповый бит; 8 бит, контроль ченчости, 1 стоповый бит; 8 бит, без контроля ченности, 1 стоповый бит; 10 кбит, без контроля ченности, 2 стоповых бита Поляризация Нет полных сопротивлений поляризации Они должны поставляться с системой соединений (например, с ведущим устройством) Количество преобразователей Максимально 31 преобразователь Адрес От 1до 247 конфигурируются с помощью терминала дисплея или ПО Запись одного регистра (03), не более 63 слов Запись нескольких регистров (16), не более 61 слова Чтение, уапись нескольких регистров (23), не более 63/59 слов Чтение идентификатора устройства (43) Диагностика (08) Контроль связи Может быть активирована функция контроля (защита узлов ветвления) Период между запусками может устанавливаться между 0.1 с и 10 с	Протокол Modbus (прес	образователи LXM 05A•••••, LXM	05Beeeee, LXM 05Ceeee)	
Режим передачи Скорость передачи Конфигурируется с помощью терминала дисплея или ПО PowerSuite: 9600 бит/с, 19,2 кбит/с или 38,4 кбит/с для последовательных соединений до 400 м Формат Конфигурируется с помощью терминала дисплея или ПО PowerSuite: ■ 8 бит, контроль нечетности, 1 стоповый бит; ■ 8 бит, контроль четности, 1 стоповый бит; ■ 8 бит, без контроля четности, 1 стоповый бит; ■ 8 бит, без контроля четности, 2 стоповых бита Поляризация Нет польных сопротивлений поляризации Они должны поставляться с системой соединений (например, с ведущим устройством) Количество преобразователей Максимально 31 преобразователь Адрес От 1до 247 конфигурируются с помощью терминала дисплея или ПО Рервисы Сообщения Чтение регистров хранения (03), не более 63 слов Запись одного регистра (06) Запись нескольких регистров (16), не более 61 слова Чтение/запись нескольких регистров (23), не более 63/59 слов Чтение идентификатора устройства (43) Диагностика (08) Контроль связи Может быть активирована функция контроля (защита узлов ветвления) Период между запусками может устанавливаться между 0.1 с и 10 с	структура	Соединитель	RJ45 (маркированный CN4)	
Скорость передачи Конфигурируется с помощью терминала дисплея или ПО PowerSuite: 9600 бит/с, 19,2 кбит/с лля 38,4 кбит/с для последовательных соединений до 400 м Конфигурируется с помощью терминала дисплея или ПО PowerSuite: ■ 8 бит, контроль нечетности, 1 стоповый бит; ■ 8 бит, контроль четности, 1 стоповый бит; ■ 8 бит, без контроля четности, 1 стоповый бит; ■ 8 бит, без контроля четности, 1 стоповый бит; ■ 8 бит, без контроля четности, 2 стоповых бита Поляризация Нет полных сопротивлений поляризации Они должны поставляться с системой соединений (например, с ведущим устройством) Количество преобразователей Максимально 31 преобразователь Адрес От 1до 247 конфигурируются с помощью терминала дисплея или ПО Сервисы Сообщения Чтение регистров хранения (03), не более 63 слов Запись одного регистра (06) Запись нескольких регистров (23), не более 63/59 слов Чтение идентификатора устройства (43) Диагностика (08) Контроль связи Может быть активирована функция контроля (защита узлов ветвления) Период между запусками может устанавливаться между 0.1 с и 10 с		Физический интерфейс	2-проводной, многоточечный RS 485	
9600 бит/с, 19,2 кбит/с или 38,4 кбит/с для последовательных соединений до 400 м Формат Конфигурируется с помощью терминала дисплея или ПО PowerSuite: ■ 8 бит, контроль нечетности, 1 стоповый бит; ■ 8 бит, контроль четности, 1 стоповый бит; ■ 8 бит, без контроля четности, 2 стоповый бит; ■ 8 бит, без контроля четности, 2 стоповый бит; ■ 8 бит, без контроля четности, 2 стоповый бит; ■ 8 бит, без контроля четности, 2 стоповый бит; ■ 8 бит, без контроля четности, 2 стоповый бит; ■ 8 бит, без контроля четности, 2 стоповый бит; ■ 8 бит, без контроля четности, 2 стоповый бит; ■ 8 бит, без контроля четности, 2 стоповый бит; ■ 8 бит, без контроля четности, 2 стоповый бит; ■ 8 бит, без контроля системой соединений (например, с ведущим устройством) Количество преобразователей Максимально 31 преобразователь Адрес От 1до 247 конфигурируются с помощью терминала дисплея или ПО Запись одного регистров хранения (03), не более 63 слов запись одного регистров (16), не более 61 слова чтение/запись нескольких регистров (16), не более 61 слова чтение идентификатора устройства (43) диагностика (08) Контроль связи Может быть активирована функция контроля (защита узлов ветвления) Период между запусками может устанавливаться между 0.1 с и 10 с		Режим передачи	RTU	
■ 8 бит, контроль нечетности, 1 стоповый бит; ■ 8 бит, контроль четности, 1 стоповый бит; ■ 8 бит, без контроля четности, 2 стоповых бита Поляризация Поляризация Нет полных сопротивлений поляризации Они должны поставляться с системой соединений (например, с ведущим устройством) Количество преобразователей Максимально 31 преобразователь Адрес От 1до 247 конфигурируются с помощью терминала дисплея или ПО Сервисы Сообщения Чтение регистров хранения (03), не более 63 слов Запись одного регистра (06) Запись нескольких регистров (16), не более 61 слова Чтение/запись нескольких регистров (23), не более 63/59 слов Чтение идентификатора устройства (43) Диагностика (08) Контроль связи Может быть активирована функция контроля (защита узлов ветвления) Период между запусками может устанавливаться между 0.1 с и 10 с		Скорость передачи		
Они должны поставляться с системой соединений (например, с ведущим устройством) Количество преобразователей Максимально 31 преобразователь Адрес От 1до 247 конфигурируются с помощью терминала дисплея или ПО Сервисы Сообщения Чтение регистров хранения (03), не более 63 слов Запись одного регистра (06) Запись нескольких регистров (16), не более 61 слова Чтение/запись нескольких регистров (23), не более 63/59 слов Чтение идентификатора устройства (43) Диагностика (08) Контроль связи Может быть активирована функция контроля (защита узлов ветвления) Период между запусками может устанавливаться между 0.1 с и 10 с		Формат	 ■ 8 бит, контроль нечетности, 1 стоповый бит; ■ 8 бит, контроль четности, 1 стоповый бит; ■ 8 бит, без контроля четности, 1 стоповый бит; 	ΠΟ PowerSuite:
Адрес От 1до 247 конфигурируются с помощью терминала дисплея или ПО Сервисы Сообщения Чтение регистров хранения (03), не более 63 слов Запись одного регистра (06) Запись нескольких регистров (16), не более 61 слова Чтение/запись нескольких регистров (23), не более 63/59 слов Чтение идентификатора устройства (43) Диагностика (08) Контроль связи Может быть активирована функция контроля (защита узлов ветвления) Период между запусками может устанавливаться между 0.1 с и 10 с		Поляризация	· · · · · · · · · · · · · · · · · · ·	пример, с ведущим устройством)
Сервисы Сообщения Чтение регистров хранения (03), не более 63 слов Запись одного регистра (06) Запись нескольких регистров (16), не более 61 слова Чтение/запись нескольких регистров (23), не более 63/59 слов Чтение идентификатора устройства (43) Диагностика (08) Контроль связи Может быть активирована функция контроля (защита узлов ветвления) Период между запусками может устанавливаться между 0.1 с и 10 с		Количество преобразователей	Максимально 31 преобразователь	
Запись одного регистра (06) Запись нескольких регистров (16), не более 61 слова Чтение/запись нескольких регистров (23), не более 63/59 слов Чтение идентификатора устройства (43) Диагностика (08) Контроль связи Может быть активирована функция контроля (защита узлов ветвления) Период между запусками может устанавливаться между 0.1 с и 10 с		Адрес	От 1до 247 конфигурируются с помощью терминала д	исплея или ПО
Период между запусками может устанавливаться между 0.1 с и 10 с	Сервисы	Сообщения	Запись одного регистра (06) Запись нескольких регистров (16), не более 61 слова Чтение/запись нескольких регистров (23), не более 63 Чтение идентификатора устройства (43)	/59 слов
Normonius 7		Контроль связи		
диагностика индикация неисправностеи на встроенном 7-сегментном терминале	Циагностика		Индикация неисправностей на встроенном 7-сегментн	юм терминале

PROFIBUS DP протокол (касается только преобразователей LXM 05В ●●●●●●)								
Структура	Соединитель	Пружинные клеммы (маркированные CN1)						
	Физический интерфейс	2-проводной, многоточечный RS 485						
	Скорость передачи	Скорость передачи зависит от длины шины: ■ 9.6 кбит/с, 19.2 кбит/с, 45.45 кбит/с, 93.75 кбит/с для шины длиной до 1200 м ■ 187.5 кбит/с для шины длиной до 1000 м ■ 500 кбит/с для шины длиной до 400 м ■ 1.5 Мбит/с для шин длиной до 200 м ■ 3 Мбит/с, 6 Мбит/с, 12 Мбит/с для шин длиной до100 м						
	Адрес	От 1до 126 конфигурируются с помощью терминала дисплея или ПО						
Сервисы	Периодические переменные	РРО Тип 2 8 байт РКW 12 байт данные процесса						
	Контроль связи	Может быть запрещен Период между запусками ("Time out")может устанавливаться посредством конфигуратора шины PROFIBUS DP						
Диагностика		2 светодиода: RUN («пуск») и ERR («ошибка») на встроенном 7-сегментном терминале Индикация неисправности Полная диагностика при помощи ПО PowerSuite						
Файл описания		Один файл с расширением gsd для всего ряда, поставляется на компакт-диске с документацией. Этот файл содержит описание параметров преобразователя.						

version: 2.1

Преобразователи Lexium 05A, 05B и 05С

Преобразователи Lexium 05A, 05B и 05C

LXM 05 D10F1 LXM 05CU70M2 LXM 05 • D10M2 LXM 05• D10M3X

LXM 05 D17F1 LXM 05 D17M2 LXM 05● D17M3X LXM 05 D14N4

LXM 05 D28F1 LXM 05**●** D28M2 LXM 05 D42M3X LXM 05 D22N4 LXM 05• D34N4

LXM 05 D57N4

Представление:

стр. 61060/2

Выходной	ток			Ном. мощность	Линейны	й ток	Макс. ожидаемый	№ по каталогу (1) (2)	Macca
Длительні (RMS)	ый действ.	Пиковый д (3)	ейств. (RMS)		при U1	при U2	линейный I к.з.		
при 4 кГц	при 8 кГц	при 4 кГц	при 8 кГц	при 4 кГц	(4)	(4)			
Α	Α	Α	A	кВ	Α	A	кА		KI
Однофаз	ное питаю	щее напряж	ение: 100	. 120 B \sim (4	() 50-60 Г ц	,, со встроен	ным ЭМС фил	пьтром	
4	3.2	7	6	0.4	7.6	7	1	LXM 05AD10F1	1.10
								LXM 05BD10F1	1.10
8	7	12	11	0.65	11.5	10.5	1		1.40
									1.40
15	13	20	20	0.85	22.6	20.7	1		2.00
								LXM 05BD28F1	2.00
Опиофаз	ное питаю	IIIOO HARRAW	опио. 500	240 B \(\cdot \) //)50-60 Fu	CO PCTDOQUI	ным ЭМС фил	ILTDOM	
Одпофа з	2.4	дее папряж 5	4.3	0.4	4.8	4	лым эмс фил 1	•	1.10
4	3.2	7	6	0.75	8.1	6.7	1		1.10
•	0.2	,	O	0.70	0.1	0.1			1.10
									1.10
8	7	12	11	1.2	12.7	10.5	1		1.40
o .	•			1.2	12.7	10.0	·		1.40
								_	1.40
15	13	20	20	2.5	23	19.2	1		2.00
10	10	20	20	2.0	20	10.2	·	LXM 05AD10F1 LXM 05BD10F1 LXM 05BD10F1 LXM 05BD17F1 LXM 05BD28F1 LXM 05BD28F1 LXM 05BD28F1 LXM 05BD28F1 LXM 05BD10M2 LXM 05CD10M2 LXM 05CD10M2 LXM 05CD17M2 LXM 05CD17M2 LXM 05CD17M2 LXM 05CD17M2 LXM 05CD17M2 LXM 05CD17M2 LXM 05AD18M2 LXM 05AD18M2 LXM 05AD10M3X LXM 05BD10M3X LXM 05BD10M3X LXM 05AD10M3X LXM 05AD10M3X LXM 05AD10M3X LXM 05AD110M3X LXM 0	2.00
									2.00
Трехфаз 4	н ое питаю ц 3.2	цее напряже 7	ение: 200 6	240 B <i>∼ (4</i> 0.75	5.2 5.2	4.3	ным ЭМС фи л 5	LXM 05AD10M3X	1.10
									1.10
8	7	12	11	1.4	9	7.5	5		1.30
									1.30
17	15	30	30	3.2	19	15.8	5	-	1.90
								LXM 05BD42M3X	1.90
Трехфазі	ное питаюн	пее напраже	эние: 380	480 B ∼ (4)	50/60 Fu.	со встроени	ым ЭМС филі	ьтпом	
6	5	10	7.5	1.4	4.2	3.3	5 5	•	1.40
						0.0	Ü		1,40
								-	1.40
9	7	16	14	2	6.3	5	5		2.00
									2.00
								-	2.00
15	11	24	18	3	9.7	7.7	5		2.00
				•	•				2.00
									2.00
25	20	40	30	6	17.7	14	22		4.80
				•					4.80
									4.80
	ект для с	ответств	ия ЭМС (2	?)					
Описание			Область пры	именения				№ по каталогу	Масса кг
	для соответ от связь, соотв		LXM 05 D10F LXM 05CU70N	:1 12, LXM 05●D10	DM2			VW3 M2 101	

VW3 M2 102

VW3 M2 103

Схемы:

Характеристики:

стр. 61062/2

LXM 05•D10M3X

LXM 05•D17F1, •D28F1

LXM 05•D17M2, •D28M2

LXM 05•D14N4, •D34N4 LXM 05 • D57N4

LXM 05•D17M3X, •D42M3X

стандартам ЭМС, см. стр. 61068/21

■ Крепежных принадлежностей

Комплект состоит из:

■ Платы ЭМС

■ Клемм

Функции:

стр. 61061/2

Размеры:

стр. 61067/2

стр. 61068/2 Schneider Belectric 61063-EN.indd version: 1.2

⁽¹⁾ Для информации о различных функциях преобразователей LXM 05A••••• LXM 05B••••• и LXM 05C••••• см. стр. 61060/15. (2) Преобразователи LXM 05A•••• и LXM 05B•••• поставляются с комплектом для соответствия ЭМС. Для преобразователей LXM 05C•••• комплект лоступен как опция и может быть заказан отлельно.

Дополнительные комплекты могут также быть заказаны отдельно для любого из преобразователей Lexium.

⁽³⁾ Максимальная величина в течение 3 секунд.

⁽⁴⁾ Номинальное питающее напряжение, минимальное U1, максимальное U2: 100 (U1) ... 120 В (U2), 200 (U1) ... 240 В (U2), 380 (U1) ... 480 В (U2).

⁽⁵⁾ Дополнительный фильтр ЭМС доступен как опция, см. стр. 61065/3.

(продолжение)

перемещениями Lexium 05 Преобразователи Lexium 05A, 05B и 05С

Устройство управления

Отдельные компоненты

Преобразователь Lexium 05 может быть соединен с выносным терминалом дисплея. Выносной терминал дисплея может быть установлен на двери шкафа со степенью защиты на передней панели IP 65.

Терминал обеспечивает доступ к тем же самым функциям, что и встроенный дисплей с клавиатурой на передней панели преобразователя.

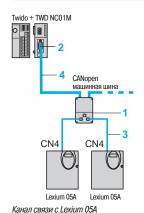
Он может использоваться для:

- удаленного конфигурирования, настройки и управления преобразователем;
- обеспечения удаленной индикации.

Описание	Область применения	№ по каталогу	Масса кг
Выносной терминал дисплея Поставляется с одним 5 м кабелем, оснащенным 2 разъемами, уплотнением и винтами для обеспечения IP 65 на двери шкафа	LXM 05••••••	VW3 A31101	0.380
Платы для монтажа на DIN-рейку шириной 35 мм	LXM 05•D10F1 LXM 05CU72M2, •D10M2 LXM 05•D10M3X	VW3 A11851	0.200
	LXM 05•D17F1, LXM 05•D17M2, LXM 05•D17M3X, LXM 05•D14N4	VW3 A31852	0.220

Документация (1)		
Описание	№ по каталогу	Масса кг
Упрощенное руководство пользователя Lexium 05	(2)	_

CD-ROM, содержащий:	VW3 M8 703


- Различные руководства пользователя
 Руководство пользователя по Modbus и CANopen
 Руководство пользователя по Profibus DP

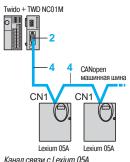
3

⁽¹⁾ Руководства и краткие справочники по преобразователям и серводвигателям доступны на нашем вебсайте: «www.schneider-electric.com».

⁽²⁾ Поставляется с каждым преобразователем Lexium 05.

Преобразователи Lexium 05А

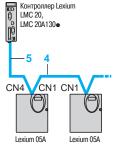
через разъем RJ45 (CN4)


Машинная шина CANopen для преобразователя Lexium 05A

Преобразователь Lexium 05А может быть связан непосредственно с машинной САNореп через пружинный клеммник или разъем RJ45.

Функция коммуникации обеспечивает доступ к конфигурированию преобразователя, настройке, управлению и текущему контролю. Каждый преобразователь содержит терминаторы линии, которые могут быть отсоединены посредством выключателя.

Принадлежности соединени	ıя <i>(1)</i>			
Описание	Применение	№ на рис.	№ по каталогу	Масса кг
Соединительная коробка CANopen IP20 2 порта RJ45	Ответвление от основного кабеля для кабельной сети RJ45	1	VW3 CAN TAP2	0.480
IP20 SUB-D разъемы, Угловой, 9-контактный гнездовой SUB-D Выключатель для терминатора линии	Соединение магистрального кабеля к программируемому контроллеру Twido и программируемому логическому контроллеру Premium	2	TSX CAN KCDF 90T	0.046


Описание	Применение		№ на рис.	Длина	№ по каталогу	Macca	
	ОТ	К		М		КГ	
Кабели CANopen,	Преобразователь	Коммутационная	3	0.3	VW3 CAN CARR03	0.050	
оснащенные 2 разъемами RJ45	LXM 05А • • • • • • • коробка W/3 CAN TAP2 (клеммник CN4)		1	VW3 CAN CARR1	0.500		
Кабели CANopen (1)	Преобразователь	Коммутационная	4	50	TSX CAN CA 50	4.930	
Стандартные кабели,	LXM 05A • • • • • • • • • • • • • • • • • • •	коробка W3 CAN TAP2 Разъем CANopen		100	TSX CAN CA 100	8.800	
маркировка С Є Малое выделение дыма, без галогенов Замедлитель пламени (МЭК 60332-1)	(клеммник CN1)	TSX CAN KCDF 90T Tpeoбразователь LXM 05A (клеммник CN1)		300	TSX CAN CA 300	24.560	
	Коммутационная коробкаРазъем CANopen TSX CAN KCDF 90TW3 CAN TAP2	Разъем CANopen TSX CAN KCDF 90T					
Кабели CANopen (1)	Преобразователь	4	50	TSX CAN CB 50	3.580		
UL сертификация,		11) Разъем САNореп		100	TSX CAN CB 100	7.840	
маркировка С € Замедлитель пламени (МЭК 60332-1)	(клеммник СМТ)		TSX CAN KCDF 90T Преобразователь LXM 05А••••••		300	TSX CAN CB 300	21.870
	Коммутационная коробка WW3 CAN TAP2						
Кабели CANopen (1)	Преобразователь	Коммутационная	4	50	TSX CAN CD 50	3.510	
Кабели для жестких условий	LXM 05A	коробка WW3 CAN TAP2		100	TSX CAN CD 100	7.770	
эксплуатации (2) или передвижных установок, маркировка С € Малое выделение дыма, без галогенов Замедлитель пламени (МЭК 60332-1)	(клеммник CN1)	TSX CAN KCDF 90T Преобразователь LXM 05A••••• (клеммник CN1) Разъем CANopen		300	TSX CAN CD 300	21.700	

Канал связи с Lexium 05А через пружинные клеммники (CN1)

CANopen Motionbus для преобразователя Lexium 05A

CANopen Motionbus может применяться с контроллером Lexium для управления перемещениями вплоть до 8 сервоприводов Lexium 05A.

Канал связи по CANopen Motionbus

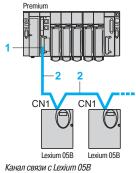
Представление:

Кабель связи						
Описание	· · · · · · · · · · · · · · · · · · ·		№ на рис.	• •	м № по каталогу	Macca
	ОТ	К		М		КГ
Кабель оснащен одним, 9-контактным гнездовым разъемом SUB-D со встроенным терминатором линии и одним разъемом RJ45	Контроллер перемещений Контроллер Lexium LMC 20, LMC 20A130●	Преобразователь LXM 05А●●●● (разъем CN4)	5	1	VW3 M3 805R010	_

Размеры

Схемы:

- (1) Для других принадлежностей машинных шин связи CANopen, пожалуйста справляйтесь в нашем каталоге "Машины и установки с CANopen".
- (2) Жесткая окружающая среда: устойчивость к углеводородам, индустриальным маслам, моющим средствам, брызгам припоя;


Характеристики:

- относительная влажность до 100 %;
- солевая атмосфера;

Функции

- значительные колебания температуры;
- рабочая температура между -10°C и +70°C.

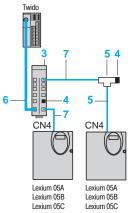
Преобразователи Lexium 05A, 05B и 05С

через пружинные клеммники (CN1)

Промышленная шина PROFIBUS DP для преобразователей Lexium 05B

Преобразователь Lexium 05B может быть связан непосредственно с шиной PROFIBUS DP через пружинный клеммник (CN1). Функция связи обеспечивает доступ к функциям, уже описанным для машинной шины CANopen.


Принадлежности соединени	9 1 (1)					
Описание	Применение	№ на ри	1C.	№ по каталогу	Масса кг	
IP20 SUB-D разъемы, угловой, 9-контактный гнездовой SUB-D Выключатель для терминатора линии	к программируемому ко	одключение магистрального кабеля программируемому контроллеру Twido программируемому логическому контроллеру emium			TSX CAN KCDF 90T	
Кабели						
Описание	Применение		№ на рис.	Длина	№ по каталогу	Macca
	ОТ	К		М		КГ
Магистральные кабели	Преобразователь	Преобразователь	2	100	TSX PBS CA 100	_
PROFIBUS DP	LXM 05B • • • • •	LXM 05В●●●●● Разъем TSX CAN KCDF 90T		400	TSX PBS CA 400	_


Последовательный канал связи Modbus для преобразователей Lexium 05A, 05B и 05C

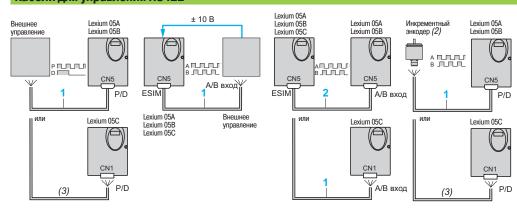
Каждый преобразователь Lexium 05 может быть подсоединен непосредственно к последовательному каналу связи Modbus через разъем RJ45.

Функция связи обеспечивает досту	п к конфигурированию пре	еобразователя, настрой	і́ке и фуні	кциям конт	роля.	
Принадлежности соединения						
Описание			№ на рис.	Длина	№ по каталогу	Масса
				М		КГ
Соединительная коробка 3 винтовых клеммника, RC терминатор линии	Для соединения применяйт	_	_	TSX SCA 50	0.520	
Пользовательский разъем Два 15-контактных гнездовых разъема SUB-D и 2 винтовых клеммника, RC терминатор линии	Для соединения применяйте кабель W3 A8 306			-	TSX SCA 62	0.570
Разветвительная коробка Modbus 10 разъемов RJ45 и 1 винтовой клеммник	Для соединения до 8 преобразователей Lexium 05 к последовательному каналу связи Modbus посредством разъемов RJ45		3	-	LU9 GC3	0.500
Терминаторы линии Modbus (2)	Для RJ45	R = 120 Ом, C = 1 нФ	4	-	VW3 A8 306 RC	0.200
		R = 150 Ом	4	_	VW3 A8 306 R	0.200
	Для винтовых клеммников	R = 120 Oм, $C = 1 н$ Ф	_	-	VW3 A8 306 DRC	0.200
		R = 150 Ом	-	-	VW3 A8 306 DR	0,200
Коробки RJ45 Т-ветвителей Modbus	Ответвление от последовательного канала связи Modbus		5	0.3	VW3 A8 306 TF03	0.190
(со встроенным кабелем)				1	VW3 A8 306 TF10	0.210
Кабель связи						
Описание	Применение		№ на	Длина	№ по каталогу	Macca

Разветвительная коробка Modbus 10 разъемов RJ45 и 1 винтовой клеммник	Для соединения до 8 преоб к последовательному канал посредством разъемов RJ4	y связи Modbus	3	_	LU9 GC3	0.500
Терминаторы линии Modbus (2)	Для RJ45	R = 120 Ом, C = 1 нФ	4	-	VW3 A8 306 RC	0.200
		R = 150 Ом	4	-	VW3 A8 306 R	0.200
	Для винтовых клеммников	R = 120 Oм, $C = 1 н$ Ф	-	-	VW3 A8 306 DRC	0.200
		R = 150 Ом	_	-	VW3 A8 306 DR	0,200
Коробки RJ45 Т-ветвителей Modbus (со встроенным кабелем)	Ответвление от последоват Modbus	ельного канала связи	5	0.3	VW3 A8 306 TF03 VW3 A8 306 TF10	0.190
Кабель связи				-		
Описание	Применение		№ на рис.	Длина	№ по каталогу	Macca
	от	К		М		КГ
Кабели для последовательного канала связи с контроллером TWIDO (1), оснащенным разъемом мини-DIN и RJ45	Программируемый контроллер TWIDO	Преобразователь LXM 05••••• Разветвительная коробка Modbus LU9 GC3	6	0.3	TWD XCA RJ 003	_
				1	TWD XCA RJ 010	0.090
			}	3	TWD XCA RJ 030	0.160
Кабели для последовательного канала связи Modbus, оснащенные одним разъемом RJ45 (другой конец свободен)	Преобразователь LXM 05••••• (CN4)	Коммутационная коробка TSX SCA 50	_	3	VW3 A8 306 D30	0.150
Кабели для последовательного канала связи Modbus, оснащенные разъемом RJ45 и 15-контактной вилкой SUB-D	Преобразователь LXM 05••••• (CN4)	Пользовательский разъем TSX SCA 62	_	3	VW3 A8 306	0.150
Кабели для последовательного	Преобразователь	Разветвительная	7	0.3	VW3 A8 306 R03	0.025
канала связи Modbus, оснащенные 2 разъемами RJ45	LXM 05••••• (CN4) Разветвительная	коробка Modbus LU9 GC3 Коробка Т-ветвителя	3	1	VW3 A8 306 R10	0.060
2 разъемами пучэ		Modbus W3 M8 306TF●●		3	VW3 A8 306 R30	0.130
Кабели Modbus: экранированная	Разветвительная	Разветвительная	_	100	TSX SCA 100	5.680
двойная витая пара RS485,	коробка Modbus LU9 GC3	коробка Modbus LU9 GC3	3	200	TSX SCA 200	10.920
оснащенные 2 разъемами RJ45				500	TSX SCA 500	30.000

Канал связи с Lexium 05А через разъем RJ45 (CN4)

TSX SCA50


TSX SCA62

Представление:

Преобразователи Lexium 05A, 05B и 05С

Описание	Применение		№ на рис.	Длина	№ по каталогу	Macca
	ОТ	К		М		КГ
Кабели для TSX CAY●●	Преобразователи	TSX CAY●●	_	0.5	VW3 M8 203 R05	0.020
модуля Prenium, оснащенные 10- контактным разъемом Molex	LXM 05	модули Prenium (15-контактный SUB-D)		1.5	VW3 M8 203 R15	0.030
и 15-контактным разъемом NIOlex	(имитация энкодера))	(13-kontaktribin 300-0)		3	VW3 M8 203 R30	0.040
·				5	VW3 M8 203 R50	0.050
Кабели для TSX CFY●●		TSX CFY●●	_	0.5	VW3 M8 204 R05	0.020
модуля Prenium, оснащенные 10- контактным разъемом Molex	LXM 05A • • • • • , LXM 05B • • • • •	модули Prenium (15-контактный SUB-D)		1.5	VW3 M8 204 R15	0.030
и 15-контактным разъемом Noiex	(CN5: вход: сигналы импульс/направление (P/D))	(CN5: вход: сигналы		3	VW3 M8 204 R30	0.040
·				5	VW3 M8 204 R50	0.050
Кабели для TSX CFY●●	Преобразователи	TSX CFY●●	_	0.5	VW3 M8 214 R05	
модуля Prenium, оснащенные 15-контактным разъемом SUB-D	CN1 pyon outpon	модули Prenium		1.5	VW3 M8 214 R15	_
13-контактным разъемом эоб-о	(CN1: вход: сигналы импульс/направление (P/D))	(15-контактный SUB-D)		3	VW3 M8 214 R30	-
				5	VW3 M8 214 R50	-

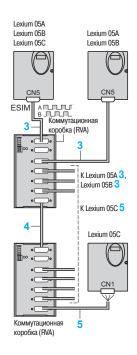
Описание	Применение		№ на рис.	Длина	№ по каталогу	Масса
	ОТ	К		М		КГ
Кабели управления RS422,	Преобразователи	Внешнее управление	1	0.5	VW3 M8 201 R05	0.020
оснащенные 10- контактным разъемом Molex	LXM 05A•••••, LXM 05B•••••	(сигналы импульс/ направление), внешний		1.5	VW3 M8 201 R15	0.030
	(CN5 вход: сигналы	энкодер (сигналы А/В)		3	VW3 M8 201 R30	0.040
	импульс/направление (P/D) или A/B)			5	VW3 M8 201 R50	0.050
	Преобразователи LXM 05••••••, (CN5: ESIM (имитация энкодера))	Внешнее управление (сигналы А/В)				
	Преобразователи LXM 05С●●●●, (CN5: ESIM (имитация энкодера))	LXM 05C ••• • со связью ведущий/				
Кабели управления RS422,	Преобразователи	Преобразователи	2	0.5	VW3 M8 202 R05	0.025
оснащенные двумя 10- контактными разъемами Molex	LXM 05•••••, (CN5: ESIM	LXM 05A • • • • • ,		1.5	VW3 M8 202 R15	0.035
разъемами ічіонех	(Січэ: ЕЗІІVІ (имитация энкодера))	со связью ведущий/		3	VW3 M8 202 R30	0.045
	ведомый (CN5 вход: сигналы A/B)		5	VW3 M8 202 R50	0.055	

Примечание: ESIM (имитация энкодера) обозначает выходные сигналы энкодера, имитируемые преобразователем (доступны на разъеме CN5 преобразователя Lexium 05, сконфигурированного как выход).

⁽¹⁾ Для других кабелей связи с Modicum Premium, пожалуйста, справляйтесь с нашим каталогом для специалистов "Основы автоматизации Modicon Premium и программного обеспечения Unity - PL7".

⁽²⁾ Для применения опции Osicoder® инкрементных энкодеров XCC14, XCC15 или XCC19, пожалуйста, справляйтесь с нашим каталогом для специалистов "Вращающиеся энкодеры -Osicoder®".

⁽³⁾ Кабель, не поставляется; см. спецификацию в руководстве пользователя Lexium 05, доступном на нашем вебсайте www.schneider-electric.com.


Запасные разъемы

Устройство управления перемещениями Lexium 05 Преобразователи Lexium 05A, 05B и 05C

WW3 M3 102 (USIC)

Janachbie pasbewbi						
Описание	Применение				№ по каталогу	Масса кг
Разъемы Molex (продаются по 5 шт.)	10-контактные гнездовые Lexium 05	разъемы для разъема СМ5	преобраз	ователя	VW3 M8 212	-
Другие компоненты	соединения					
Принадлежности интерфе	ейса связи RS422					
Описание	Применение				№ по каталогу	Масса кг
Распределительная коробка для сигналов знкодера (RVA)		лов энкодера А/В или импу. і́ Lexium 05. Включает исто энкодера			VW3 M3 101	0.700
Конвертер RS422 знкодера (USIC)	Для согласования сигнало	ов управления 24 В со станд	цартом RS	422	VW3 M3 102	_
Кабели						
Описание	Применение		№ на рис.	Длина	№ по каталогу	Масса
	от	К		М		КГ
Кабели для интерфейса	Преобразователи	Разветвительная	3	0.5	VW3 M8 209 R05	0.020
RS 422, оснащенные 10-контактным разъемом Molex	LXM 05A • • • • • , LXM 05B • • • • •	коробка VW3 M3 101 (RVA) для распределения		1.5	VW3 M8 209 R15	0.030
и 15-контактным разъемом SUB-D		сигнала ESIM		3	VW3 M8 209 R30	0.040
·		Преобразователь W3 M3102 (USIC)		5	VW3 M8 209 R50	0.050
	Преобразователи LXM 05●●●●●● (CN5: ESIM (имитация энкодера))	Разветвительная коробка VW3 M3 101 (RVA) для распределения сигнала ESIM				
Кабель оснащен двумя 15-контактными гнездовыми разъемами SUB-D Для каскадного включения двух разветвительных коробок	Разветвительная коробка WW3 M3 101 (RVA)	Разветвительная коробка WW3 M3 101 (RVA)	4	0.5	VW3 M8 211 R05	_
Кабель	Программируемый	Преобразователь	5	0.5	VW3 M8 210 R05	_
для программируемого	логический	W3 M3102 (USIC) (15-контактный SUB-D)		1.5	VW3 M8 210 R15	_
логического контроллера оснащен 15-контактным	контроллер или внешнее управление	(13-KOHTAKTHЫN SOD-D)		3	VW3 M8 210 R30	
гнездовым разъемом SUB-D	_			5	VW3 M8 210 R50	_
Для сигналов импульс/ направление	Разветвительная коробка VW3 M3 101 (RVA) для распределения сигнала ESIM	Преобразователь LXM 05С●●●●● (CN1 вход)				
Кабели для сигналов управления импульс/ направление, оснащенные 10-контактным разъемом Molex	Преобразователи LXM 05А•••••, LXM 05В••••• (CN5 вход)	Siemens S5 IP 247	-	3	VW3 M8 205 R30	_
для Lexium 05 и адаптированным 9-контактным разъемом SUB-D	Преобразователи LXM 05A•••••, LXM 05B••••• (CN5 вход)	Siemens S5 IP 267	-	3	VW3 M8 206 R30	_
Кабели для сигналов управления импульс/ направление, оснащенные 10-контактным разъемом Molex для Lexium 05 и адаптированным 15-контактным разъемом SUB-D	Преобразователи LXM 05А●●●●, LXM 05В●●●●● (CN5 вход)	Siemens S7 FM 353	-	3	VW3 M8 207 R30	_
Кабели для обратной связи энкодера, оснащенные 10-контактным разъемом Molex (для преобразователя Lexium 05) и 15-контактным разъемом SUB-D	Преобразователи LXM 05•••••, (CN5: ESIM (имитация энкодера))	Siemens S7 FM 354	-	3	VW3 M8 208 R30	_

Примечание: ESIM (имитация энкодера) означает имитацию выходных сигналов энкодера преобразователями (доступно на разъеме CN5 преобразователя Lexium 05 сконфигурированного как выход).

Функции: стр. 61061/2 Представление: Характеристики: Размеры: Схемы: стр. 61060/2 стр. 61062/2 стр. 61067/2 стр. 61068/2

Характеристики

Каталожные номера:

Устройство управления перемещениями Lexium 05

Преобразователи Lexium 05 Опция: тормозные резисторы

Тормозные резисторы

Внутренний тормозной резистор

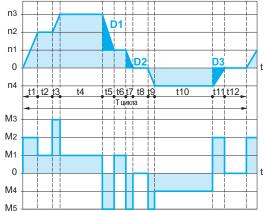
Тормозной резистор встраивается в преобразователь для поглощения энергии торможения. Если напряжение на шине постоянного тока преобразователя превышает заданную величину, включается этот тормозной резистор. Выделенная энергия преобразуется в тепловую посредством тормозного резистора.

Внешний тормозной резистор

Если серводвигатель необходимо часто тормозить, должен использоваться внешний тормозной резистор, чтобы рассеять лишнюю энергию торможения.

Если используется внешний тормозной резистор, должен быть отключен внутренний тормозной резистор. Чтобы сделать это, перемычка между PA/+ и PBI должна быть удалена и внешний тормозной резистор, подключен между PA/+ и PBE, см. стр. 61068/20.

Два или более внешних тормозных резистора могут быть соединены параллельно. Преобразователь контролирует мощность, рассеиваемую в тормозном резисторе.


Определение параметров тормозного резистора

В течение торможения или замедления, инициируемого преобразователем, кинетическая энергия движущегося груза должна быть поглощена преобразователем. Энергия, выработанная при замедлении, заряжает конденсаторы, встроенные в преобразователь.
Когда напряжение на клеммах конденсатора превысит допустимый порог, тормозной резистор (внутренний или внешний) будет автоматически подключен для того, чтобы рассеивать эту энергию. Для того, чтобы вычислить энергию, которая будет рассеяна тормозным резистором, пользователю необходимо знание временной диаграммы, выражающей вращающие моменты и скорости серводвигателя в функции времени, чтобы идентифицировать отрезки кривой, в которых преобразователь замедляет груз.

Временная диаграмма цикла работы серводвигателя

Эти кривые такие же, что и используемые на странице 61856/2 для выбора габарита серводвигателя. Сегменты кривой, на которых сервопривод производит замедление должны быть приняты в расчет (D).

Схемы

Требуемый вращающий момент М.

(продолжение)

Устройство управления перемещениями Lexium 05

Преобразователи Lexium 05 Опция: тормозные резисторы

Расчет тормозного резистора (продолжение)

Вычисление энергии постоянного замедления

Для решения задачи пользователь должен знать полный момент инерции, определяемый следующим образом:

J.: полная инерция

где

 $J_{*} = Jm$ (момент инерции серводвигателя) + Jc (момент инерции нагрузки).

Для Jm см. стр. 61841/2 и 61851/2.

Энергия Е, на каждом сегменте определяется следующим образом:

$$E_i = \frac{1}{2}J_t.\omega i^2 = \frac{1}{2}J_t.\left(\frac{2\pi n_i}{60}\right)^2$$

Что дает следующие выражения для различных сегментов:

$$E_1 = \frac{1}{2}J_t . \left(\frac{2\pi [n_3 - n_1]}{60}\right)^2$$

$$E_2 = \frac{1}{2}J_t \cdot \left(\frac{2\pi n_1}{60}\right)^2$$

$$E_3 = \frac{1}{2}J_t \cdot \left(\frac{2\pi n_4}{60}\right)^2$$

где **E**, выражено в джоулях, **J**, кг•м², **Oм** в радианах/с и **n**, в об./мин.

Энергия поглощенная встроенным конденсатором

Способность к поглощению энергии сервоприводом **Edrive** (без применения внутреннего или внешнего тормозного резистора), приведена для каждого сервопривода в таблице на странице 61064/4.

В завершающей части вычисления принимаются во внимание только сегменты \mathbf{D}_{i} для которых энергия \mathbf{E}_{i} больше чем поглотительная способность **Edrive**. Эта дополнительная энергия \mathbf{E}_{Di} должна быть рассеяна в резисторе (внутреннем или внешнем):

 $\mathbf{E}_{\mathrm{Di}} = \mathbf{E}_{\mathrm{i}} - \mathbf{Edrive}$ (в джоулях).

Вычисление длительной мощности

Длительная Рс мощность вычисляется для каждого машинного цикла:

$$Pc = \frac{\sum E_{Di}}{T_{CVCle}}$$

где **Рс** измеряется в Вт, $\mathbf{E}_{\mathbf{n}_i}$ в джоулях и **T cycle** в с.

Выбор тормозного резистора (внутреннего или внешнего)

Примечание: Это упрощенный метод выбора. В особых приложениях, например с вертикальным перемещением, этот метод недопустим. В этом случае, пожалуйста, консультируйтесь в своем региональном коммерческом представительстве.

Выбор выполняется в два шага:

- Внутренний тормозной резистор соответствует требованиям, если соблюдаются следующие два условия:
 - Максимальная энергия во время процедуры торможения должна быть меньше, чем пиковая энергия, которая может быть поглощена внутренним тормозным резистором (E_{Di} < EPk)
 - Длительная мощность должна быть меньше, чем длительная мощность внутреннего тормозного резистора (Pc < PPr)
- 2 Если одно из вышеупомянутых условий не соблюдается, должен быть использован внешний тормозной резистор, чтобы удовлетворить этим двум условиям.
 Величина внешнего тормозного резистора должна быть между минимальной и максимальной величинами, приведенными в таблице на странице 61064/4. Если тормозной резистор не укладывается в этот диапазон величин, может быть нарушена нормальная работа преобразователя и груз не может далее быть безопасно заторможен.

Schneider Belectric

Устройство управления перемещениями Lexium 05 Преобразователи Lexium 05

Опция: тормозные резисторы

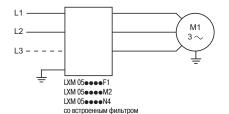
Tonacour is necessaria	140E0E1 010141 12 = ====6		VM OF	E1					
	, используемые в преобразов	зателях і	LXIVI US •		1301 OF B4754	LVILOE BOOK			
Тип преобразователя			l	LXM 05•D10F1	LXM 05•D17F1	LXM 05•D28F1			
Титающее напряжение 			B \sim	115					
- Нисло фаз -			_	Однофазный					
Торог заряда			В	250	Total	1			
Энергия, поглощенная внут		Edrive	Дж	10.8	16.2	26			
Внутренний резистор	Сопротивление		Ом	40	T.,	10			
	Продолжительная мощность	PPr	Вт Дж	20	40	60			
	Пиковая энергия ЕРК			500		1000			
Внешний резистор	Минимальное сопротивление		Ом	27	20	10			
	Максимальное сопротивление		Ом	45	27	20			
Тормозные резисторы	, используемые в преобразов	вателях I	LXM 05•	•••M2					
Тип преобразователя				LXM 05CU70M2	LXM 05•D10M2	LXM 05•D17M2	LXM 05⊕D28M2		
Титающее напряжение			B \sim	230					
Іисло фаз				Однофазный					
Іорог заряда			В	430					
Энергия, поглощенная внут	гренним конденсатором	Edrive	Дж	17.7		26.6	43		
Внутренний резистор	Сопротивление		Ом	40			20		
	Продолжительная мощность	PPr	Вт	20		40	60		
	Пиковая энергия	EPk	Дж	900			1600		
нешний резистор Минимальное сопротивление				50 27					
Внешний резистор	Минимальное сопротивление		Ом	50		27	16		
Внешний резистор	Минимальное сопротивление Максимальное сопротивление		Ом Ом	50 75		27 45	16 27		
	Максимальное сопротивление		Ом	75					
		зателях I	Ом	75 •••M3X		45			
Тормозные резисторы	Максимальное сопротивление	зателях I	Ом LXM 05•	75 •••M3X LXM 05•D10M3X	LXM 05•D17M3X				
Тормозные резисторы, Тип преобразователя	Максимальное сопротивление	зателях I	Ом	75 •••M3X	LXM 05•D17M3X	45			
Тормозные резисторы, Тип преобразователя Титающее напряжение	Максимальное сопротивление	зателях I	Ом LXM 05•	75 •••M3X LXM 05•D10M3X	LXM 05•D17M3X	45			
Тормозные резисторы, Тип преобразователя Питающее напряжение Нисло фаз	Максимальное сопротивление	зателях I	Ом LXM 05•	75 •••M3X LXM 05•D10M3X 230	LXM 05•D17M3X	45			
Тормозные резисторы, Тип преобразователя Питающее напряжение Нисло фаз Порог заряда	Максимальное сопротивление , используемые в преобразов	вателях I	Ом LXM 05• В ~ В	75 ●●●M3X LXM 05●D10M3X 230 Трехфазный	LXM 05•D17M3X	45			
Тормозные резисторы Тип преобразователя Питающее напряжение Нисло фаз Порог заряда Энергия, поглощенная внуг	Максимальное сопротивление , используемые в преобразов		Ом LXM 05• В ~ В	75 ●●●M3X LXM 05●D10M3X 230 Трехфазный 430		45 LXM 05•D42M3X			
Тормозные резисторы Тип преобразователя Питающее напряжение Нисло фаз Порог заряда Энергия, поглощенная внуг	Максимальное сопротивление , используемые в преобразов пренним конденсатором		Ом В ~ В Дж	75 ●●●M3X LXM 05●D10M3X 230 Трехфазный 430 17.7		45 LXM 05●D42M3X 43			
Тормозные резисторы Тип преобразователя Питающее напряжение Нисло фаз Порог заряда Энергия, поглощенная внуг	Максимальное сопротивление , используемые в преобразов тренним конденсатором Сопротивление	Edrive	Ом В ~ В Дж Ом	75 ●●●M3X LXM 05●D10M3X 230 Трехфазный 430 17.7 40	26.6	45 LXM 05•D42M3X 43 20			
Тормозные резисторы, Тип преобразователя Питающее напряжение Нисло фаз Порог заряда Энергия, поглощенная внут Внутренний резистор	Максимальное сопротивление в используемые в преобразов гренним конденсатором Сопротивление Продолжительная мощность Пиковая энергия	Edrive	Ом В ~ В Дж Ом Вт	75 ●●●M3X LXM 05●D10M3X 230 Трехфазный 430 17.7 40 20 900	26.6	43 20 60 1600			
Тормозные резисторы, Тип преобразователя Питающее напряжение Нисло фаз Порог заряда Энергия, поглощенная внут Внутренний резистор	Максимальное сопротивление д используемые в преобразов тренним конденсатором Сопротивление Продолжительная мощность Пиковая энергия Минимальное сопротивление	Edrive	Ом В ~ В Дж Ом Вт Дж Ом	75 ●●●M3X LXM 05●D10M3X 230 Трехфазный 430 17.7 40 20 900 50	26.6	43 20 60 1600 10			
	Максимальное сопротивление в используемые в преобразов гренним конденсатором Сопротивление Продолжительная мощность Пиковая энергия	Edrive	Ом В ~ В Дж Ом Вт	75 ●●●M3X LXM 05●D10M3X 230 Трехфазный 430 17.7 40 20 900	26.6	43 20 60 1600			
Тормозные резисторы, тип преобразователя Тип преобразователя Титающее напряжение Нисло фаз Торог заряда Энергия, поглощенная внут Внутренний резистор	Максимальное сопротивление д используемые в преобразов тренним конденсатором Сопротивление Продолжительная мощность Пиковая энергия Минимальное сопротивление	Edrive PPr EPk	Ом В ~ В Дж Ом Вт Дж Ом Ом	75 ●●●M3X LXM 05●D10M3X 230 Трехфазный 430 17.7 40 20 900 50 75	26.6	43 20 60 1600 10			
Тормозные резисторы, тип преобразователя Питающее напряжение Нисло фаз Порог заряда Энергия, поглощенная внут Внутренний резистор	Максимальное сопротивление преобразов пренним конденсатором Сопротивление Продолжительная мощность Пиковая энергия Минимальное сопротивление Максимальное сопротивление	Edrive PPr EPk	Ом В ~ В Дж Ом Вт Дж Ом Ом	75 ●●●M3X LXM 05●D10M3X 230 Трехфазный 430 17.7 40 20 900 50 75	26.6	43 20 60 1600 10			
Тормозные резисторы, тип преобразователя Питающее напряжение Мисло фаз Порог заряда Энергия, поглощенная внут Внутренний резистор Тормозные резисторы,	Максимальное сопротивление преобразов пренним конденсатором Сопротивление Продолжительная мощность Пиковая энергия Минимальное сопротивление Максимальное сопротивление	Edrive PPr EPk	Ом В ~ В Дж Ом Вт Дж Ом Ом	75 ●●●M3X LXM 05●D10M3X 230 Трехфазный 430 17.7 40 20 900 50 75	26.6 40 27 45	43 20 60 1600 10 20	27		
Тормозные резисторы, тип преобразователя Тип преобразователя Титающее напряжение Висло фаз Вирог заряда Вирогия, поглощенная внут Виутренний резистор Тормозные резисторы, тип преобразователя Витающее напряжение	Максимальное сопротивление преобразов пренним конденсатором Сопротивление Продолжительная мощность Пиковая энергия Минимальное сопротивление Максимальное сопротивление	Edrive PPr EPk	Ом B ~ B Дж Ом Вт Дж Ом Вт Дж Ом См Ом См Ом См Ом	75 ●●M3X LXM 05●D10M3X 230 Трехфазный 430 17.7 40 20 900 50 75	26.6 40 27 45 LXM 05•D22N4	45 LXM 05•D42M3X 43 20 60 1600 10 20 LXM 05•D34N4	LXM 05⊕D57N4		
Тормозные резисторы, тип преобразователя Інтающее напряжение Інсло фаз Іорог заряда Энергия, поглощенная внут Внутренний резистор Внешний резистор Тормозные резисторы, тип преобразователя Інтающее напряжение Інсло фаз	Максимальное сопротивление преобразов пренним конденсатором Сопротивление Продолжительная мощность Пиковая энергия Минимальное сопротивление Максимальное сопротивление	Edrive PPr EPk	Ом B ~ B Дж Ом Вт Дж Ом Вт Дж Ом См Ом См Ом См Ом	• ● M3X LXM 05 ● D10M3X 230 Трехфазный 430 17.7 40 20 900 50 75 ■ ● N4 LXM 05 ● D14N4 400 480	26.6 40 27 45 LXM 05•D22N4	45 LXM 05•D42M3X 43 20 60 1600 10 20 LXM 05•D34N4	LXM 05⊕D57N4		
Тормозные резисторы, тип преобразователя Інтающее напряжение Інсло фаз Інсрог заряда Энергия, поглощенная внут Внутренний резистор Внешний резистор Тормозные резисторы, тип преобразователя Інтающее напряжение Інсло фаз	Максимальное сопротивление диспользуемые в преобразов тренним конденсатором Сопротивление Продолжительная мощность Пиковая энергия Минимальное сопротивление Максимальное сопротивление диспользуемые в преобразов	Edrive PPr EPk	В В Дж Ом Вт Дж Ом Ом Вт Ом	• ● M3X LXM 05 ● D10M3X 230 Трехфазный 430 17.7 40 20 900 50 75 ● ● N4 LXM 05 ● D14N4 400 480 Трехфазный	26.6 40 27 45 LXM 05•D22N4	45 LXM 05•D42M3X 43 20 60 1600 10 20 LXM 05•D34N4	LXM 05. D57N4 400 480		
Тормозные резисторы, тип преобразователя Питающее напряжение Писло фаз Порог заряда Внергия, поглощенная внут Внешний резистор Тормозные резисторы, тип преобразователя Питающее напряжение Писло фаз Порог заряда	Максимальное сопротивление диспользуемые в преобразов тренним конденсатором Сопротивление Продолжительная мощность Пиковая энергия Минимальное сопротивление Максимальное сопротивление диспользуемые в преобразов	Edrive PPr EPk	В В Дж Ом Вт Дж Ом Ом Вт Ом	• ● M3X LXM 05 ● D10M3X 230 Трехфазный 430 17.7 40 20 900 50 75 ● ● N4 LXM 05 ● D14N4 400 480 Трехфазный 770	26.6 40 27 45 LXM 05•D22N4 400 480	45 LXM 05•D42M3X 43 20 60 1600 10 20 LXM 05•D34N4 400 480	LXM 05. D57N4 400 480 760		
Тормозные резисторы, тип преобразователя Питающее напряжение Нисло фаз Порог заряда Внергия, поглощенная внут Внешний резистор Внешний резистор Тормозные резисторы, тип преобразователя Питающее напряжение Нисло фаз Порог заряда Внергия, поглощенная внут вы преобразователя Порог заряда	Максимальное сопротивление диспользуемые в преобразов тренним конденсатором Сопротивление Продолжительная мощность Пиковая энергия Минимальное сопротивление Максимальное сопротивление диспользуемые в преобразов	Edrive PPr EPk	Ом В ~ В Дж Ом Вт Дж Ом Вт Дж Ом Ом Вт Дж Ом Ом	то мах	26.6 40 27 45 LXM 05•D22N4 400 480	45 LXM 05•D42M3X 43 20 60 1600 10 20 LXM 05•D34N4 400 480	LXM 05 • D57N4 400 480 760 104 10 20		
Тормозные резисторы, тип преобразователя Питающее напряжение Нисло фаз Порог заряда Внергия, поглощенная внут Внешний резистор Внешний резистор Тормозные резисторы, тип преобразователя Питающее напряжение Нисло фаз Порог заряда Внергия, поглощенная внут вы преобразователя Порог заряда	максимальное сопротивление диспользуемые в преобразов гренним конденсатором Сопротивление Продолжительная мощность Пиковая энергия Минимальное сопротивление Максимальное сопротивление диспользуемые в преобразов	Edrive PPr EPk вателях I	Ом В ~ В Дж Ом Вт Дж Ом Ом Вт Дж Ом Ом Вт Дж Ом Ом Вт В ~	• ● • МЗХ LXM 05 • D1 0 MЗХ 230 Трехфазный 430 17.7 40 20 900 50 75 • ● • N4 LXM 05 • D1 4 N4 400 480 Трехфазный 770 26 6 40	26.6 40 27 45 LXM 05•D22N4 400 480 52 12 30	45 LXM 05•D42M3X 43 20 60 1600 10 20 LXM 05•D34N4 400 480	LXM 05. D57N4 400 480 760 104 10		
Тормозные резисторы, тип преобразователя Питающее напряжение Нисло фаз Порог заряда Внергия, поглощенная внут Внешний резистор Внешний резистор Тормозные резисторы, тип преобразователя Питающее напряжение Нисло фаз Порог заряда Внергия, поглощенная внут вы преобразователя Порог заряда	Максимальное сопротивление диспользуемые в преобразов тренним конденсатором Сопротивление Продолжительная мощность Пиковая энергия Минимальное сопротивление Максимальное сопротивление диспользуемые в преобразов тренним конденсатором Сопротивление Продолжительная мощность	Edrive PPr EPk вателях I Edrive	Ом В ~ В Дж Ом Вт Дж Ом Ом Вт Дж Ом Ом Вт Дж Ом Ом Вт В ~	• ● • МЗХ LXM 05 • D1 0 MЗХ 230 Трехфазный 430 17.7 40 20 900 50 75 • ● • N4 LXM 05 • D1 4N4 400 480 Трехфазный 770 26 6 40 40	26.6 40 27 45 LXM 05 • D22N4 400 480 52 12 30 60 60	45 LXM 05•D42M3X 43 20 60 1600 10 20 LXM 05•D34N4 400 480	LXM 05 ● D57N4 400 480 760 104 10 20 100		
Тормозные резисторы тип преобразователя Тип преобразователя Титающее напряжение нисло фаз Торог заряда Энергия, поглощенная внут внутренний резистор Внешний резистор	Максимальное сопротивление диспользуемые в преобразов тренним конденсатором Сопротивление Продолжительная мощность Пиковая энергия Минимальное сопротивление Максимальное сопротивление диспользуемые в преобразов тренним конденсатором Сопротивление Продолжительная мощность	Edrive PPr EPk вателях I Edrive	Ом В ~ В Дж Ом Вт Дж Ом Ом Вт Дж Ом Ом Вт Дж Ом Ом Вт В ~	• ● • МЗХ LXM 05 • D1 0 MЗХ 230 Трехфазный 430 17.7 40 20 900 50 75 • ● • N4 LXM 05 • D1 4N4 400 480 Трехфазный 770 26 6 40 40	26.6 40 27 45 LXM 05 • D22N4 400 480 52 12 30 60 60	45 LXM 05•D42M3X 43 20 60 1600 10 20 LXM 05•D34N4 400 480	LXM 05 ● D57N4 400 480 760 104 10 20 100		

61064-EN.indd

version: 1.1

Устройство управления перемещениями Lexium 05 Преобразователи Lexium 05

Опция: внешние тормозные резисторы


Общие характеристин Тип тормозного резистора			VW3 A7 601 R●●.	607 Pag					
емпература окружающего	Рабочая	ŀc	0+50	007 NO					
оздуха около устройства	Хранения	°C	- 25+ 85						
	лранения	C	- 20+ 00						
тепень защиты корпуса			IP 65						
Характеристики подк	лючения								
lаксимальная длина провода	VW3 A7 601 R●●607 R●●		Поставляется с соединительным кабелем к преобр			м к преобра	азователю		
Каталожные номера									
		Величина	а Продолжи-	Пикова	я энергия	EPk	Длина	№ по каталогу	Mac
			тельная мощность PPr	115 B	230 B	400 B	соедини- тельного кабеля		
		Ом	Вт	Вт	Вт	Вт	М		
		10	400	18,800	13,300	7300	0.75	VW3 A7 601 R07	1
							2	VW3 A7 601 R20	1
111	-						3	VW3 A7 601 R30	1
W3 A7 60 e Ree		27	100	4200	3800	1900	0.75	VW3 A7 602 R07	0
W3 A7 60● R●●							2	VW3 A7 602 R20	0
							3	VW3 A7 602 R30	0
			200	9700	7400	4900	0.75	VW3 A7 603 R07	0
							2	VW3 A7 603 R20	1
							3	VW3 A7 603 R30	1
			400	25,500	18,100	11,400	0.75	VW3 A7 604 R07	1
							2	VW3 A7 604 R20	1
							3	VW3 A7 604 R30	1
		72	100	5500	3700	2500	0.75	VW3 A7 605 R07	C
							2	VW3 A7 605 R20	C
							3	VW3 A7 605 R30	(
			200	14,600	9600	6600	0.75	VW3 A7 606 R07	(
							2	VW3 A7 606 R20	1
							3	VW3 A7 606 R30	1
			400	36,600	24,700	16,200	0.75	VW3 A7 607 R07	1
							2	VW3 A7 607 R20	1

Примечание: полная длительная мощность, рассеянная во внешнем тормозном резисторе(ах), должна быть меньше или равной номинальной мощности преобразователя Lexium 05, см. страницу 61063/2.

Schneider Electric

Преобразователи Lexium 05:

Поставляемые по заказу встроенные фильтры и дополнительные фильтры

Интегрированный ЭМС фильтр

Назначение

Все преобразователи Lexium 05, за исключением модели LXM 05••••МЗХ, имеют интегрированные фильтры радиопомех для соответствия стандарту по ЭМС для мощных электроприводов с регулированием скорости IEC/EN 61800-3, выпуск 2, категория C3 для условий эксплуатации 2, и выполнить европейскую директиву по ЭМС (электромагнитная совместимость).

Для преобразователей Максимальная длина кабеля серводвигателя

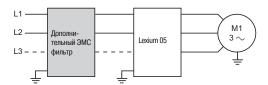
в соответствии с EN 55011, класс A, гр.2

МЭК/ЕМ 61800-3, категория СЗ для условий

эксплуатации 2

Частота коммутации 4 kHz (по умолчанию)

Однофазное питающее напряжение: 110...120 В \sim 50/60 Гц


LXM 05 • • • F1

Однофазное питающее напряжение: 200...240 В \sim 50/60 Гц

LXM 05 • • • M2

Трехфазное питающее напряжение: 380...480 В \sim 50/60 Гц

LXM 05 • • • N4

Характеристики

Каталожные номера:

Дополнительные входные ЭМС фильтры

Объединенные с преобразователями LXM 05••••F1, LXM 05••••M2, LXM 05••••M3X и LXM 05••••N4 дополнительные ЭМС фильтры могут быть применены, чтобы отвечать более строгим требованиям, и разработаны для уменьшения распространения помех по проводникам питающей линии ниже ограничений стандартов IEC 61800-3, издание 2, категории С2 и С3; см. страницу 61065/3.

Дополнительные фильтры ЭМС могут быть установлены около или под изделием. Они служат в качестве опоры для преобразователей и присоединены к ним через пробитые отверстия.

Применение в соответствии с типом питающей линии

Эти встроенные или дополнительные фильтры могут использоваться только со следующими типами источников питания: TN (с подключенной нейтралью) и ТТ (нейтраль зазамлена).

Фильтры не должны использоваться со следующим источником питания IT (нейтраль изолирована или подключена через сопротивление). Для преобразователей со встроенным фильтром (LXM 05●●●F1, LXM 05●●●M2 и LXM 05●●●N4), фильтр должен быть отключен с помощью перемычки или проводного монтажа в зависимости от специфики модели; см. страницу 61068/21.

Стандарт MЭK/EN 61800-3, приложение D2.1 устанавливает, что с источником питания IT (нейтраль изолирована или заземлена через сопротивление), фильтры могут неблагоприятно повлиять на функционирование экранированных управляющих устройств. Кроме того, эффективность дополнительных фильтров при этом типе линии источника питания зависит от типа полного сопротивления между нейтралью и землей, и поэтому не может быть предсказана.

Примечание: Если аппарат должен быть подключен к источнику питания IT, единственным решением является установка разделительного трансформатора, чтобы воссоздать систему ТТ на вторичной стороне.

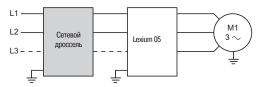
Схемы:

Устройство управления перемещениями Lexium 05 Преобразователи Lexium 05: ЭМС фильтры

Поставляемые по заказу дополнительные входные фильтры

Соответствие стандартам			EN 133200			
Степень защиты			IP 41 в верхней части с местным защитным кожухом IP 20 после снятия защитного кожуха, см. стр. 61070/2			
Этносительная влажность			В соответствии с МЭК 60721-3-3,класс ЗК3,от 5% до 85%, без конденсации или капания воды			
Температура окружающего	Рабочая	°C	0+ 50			
зоздуха около устройства Хранения		°C	- 25+70			
Высота над уровнем моря		М	1000 м без снижения номинальных значений свыше 2000 м при следующих условиях: ■ Максимальная температура 40°C ■ Установочное расстояние между преобразователями > 50 мм ■ Защитный кожух снят			
Вибростойкость	Соответствует МЭК 60068-2-6		От 10 Гц до 57 Гц: амплитуда 0.075 мм От 57 Нz до 150 Hz: 1 g			
Ударопрочность	Соответствует МЭК 60068-2-27		15 g в течение 11мc			
Максимальное номинальное напряжение	Однофазное 50/60 Гц	В	120 + 10 % 240 + 10 %			
	Трехфазное 50/60 Гц	В	240 + 10 % 480 + 10 %			
Применение, категория: EN 61800-3: 2001-02; МЭК 6	1800-3, изд. 2		Описание			
Категория С2 при условиях экс	плуатации 1		Ограниченное распространение, для домашнего использования. Продажа обусловлена компетентностью пользователя и продавца в тематике ЭМС совместимости			
	плуатации 2		Применение в промышленных условиях			

Каталожные номера



Для преобразователя					
дрія преооразователя	Максимальная длина к	№ по каталогу	Macca		
	EN 55011 класс A, гр.1	EN 55011 класс A, гр.2			
	МЭК/EN 61800-3 категория С2 при условиях эксплуатации 1	МЭК/EN 61800-3 категория СЗ при усл эксплуатации 2			
	Частота коммутации 4 кГц (по умолчанию)	Частота коммутации 4 кГц (по умолчанию)	Частота коммутации 8 кГц		
	М	м	М		кг
Однофазное питающее н	напряжение				
LXM 05•D10F1	20	40	100	VW3 A31401	0.600
LXM 05CU70M2, ●D10M2					
LXM 05•D17F1	20	40	100	VW3 A31403	0.775
LXM 05•D17M2					
LXM 05 • D28F1	20	40	100	VW3 A31405	1.130
LXM 05 • D28M2					
Трехфазное питающее н	апряжение				
LXM 05•D10M3X	20	40	100	VW3 A31402	0.550
LXM 05•D17M3X	20	40	100	VW3 A31404	0.900
LXM 05•D14N4					
LXM 05•D42M3X	20	40	100	VW3 A31406	1.350
LXM 05 • D22N4					
LXM 05•D34N4					
LXM 05•D57N4	20	40	100	VW3 A31407	3.150

version: 1.1

Преобразователи Lexium 05 Поставляемые по заказу сетевые дроссели

Сетевой дроссель

Сетевой дроссель может использоваться для обеспечения лучшей защиты от перенапряжений в питающей сети и уменьшения произведенных преобразователем гармонических искажений тока.

Рекомендуемые сетевые дроссели ограничивают ток питающей сети. Они были разработаны в соответствии со стандартом EN 50178 (VDE 0160 уровень 1 перенапряжения большой мощности в питающей сети).

Величины индуктивности определяются снижением напряжения от 3 % до 5 % номинального напряжения питающей сети. Величины выше, чем эти вызовут потерю вращающего момента. Эти дроссели должны быть установлены до преобразователя.

Один сетевой дроссель может быть соединен с несколькими преобразователями. В таком случае текущее потребление всех преобразователей при номинальном напряжении не должно превышать номинальный ток сетевого дросселя.

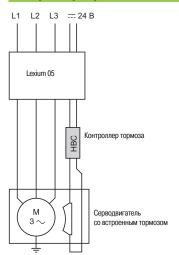
Применения

Рекомендуется применение сетевых дросселей в частности в следующих случаях:

- при параллельном соединении нескольких близко расположенных преобразователей;
- при значительных помехах в питающей сети от другого оборудования (взаимные помехи, перенапряжения);
- при дисбалансе напряжений между фазами питающей сети, составляющем больше чем 1.8 % номинального напряжения:
- при питании преобразователя от сети с очень малым полным сопротивлением (при мощности трансформатора, примерно в 10 раз превышающей номинальную мощность преобразователя);
- при подключении большого числа преобразователей к той же сети;
- для уменьшения перегрузок на, конденсаторах, повышающих соs Ф, если установка содержит батарею конденсаторов для повышения коэффициента мощности.

Общие характери	СТИКИ							
Тип сетевого дросселя			VZ1 L007UM50	VZ1 L018UM20	VW3 A4 551	VW3 A4 552	VW3 A4 553	
Соответствие стандартам			EN 50178 (VDE 0160	1 уровень перенапряж	ений большой мощн	юсти в питающей се	ти)	
Падение напряжения			От 3 до 5 % номинального напряжения питающей сети. Более высокое значение приводит к потере вращающего момента					
Степень защиты	Дроссель		IP 00					
	Клеммы		IP 20					
Значение индуктивности		мГ	5	2	10	4	2	
Номинальный ток		Α	7	18	4	10	16	
Потери		Вт	20	30	45	65	75	

Каталожные номера


VW3 A4 55•

Сетевые дроссели						
Для преобразователя	Сетевой тог	к без дросселя	Сетевой тог	к с дросселем	№ по каталогу	Macca
	U мин.	U макс.	U мин.	U макс.		
	Α	A	Α	Α		КГ
Однофазное питающее напр	яжение: 1001	20 В 50/60 Гц (1)				
LXM 05•D10F1	7.6	7	5.9	5.4	VZ1 L007UM50	0.880
LXM 05•D17F1	11.5	10.5	9.7	8.9	VZ1 L018UM20	1.990
LXM 05●D28F1	15.7	14.4	13.3	12.2		
Однофазное питающее напр	яжение: 20024	40 В 50/60 Гц <i>(1)</i>				
LXM 05CU70M2, ●D10M2	8.1	6.7	6.3	5.3	VZ1 L007UM50	0.880
LXM 05•D17M2	12.7	10.5	10.7	8.9	VZ1 L018UM20	1.990
LXM 05●D28M2	23	19.2	20.2	16.8		
Трехфазное питающее напря	яжение: 20024	0 В 50/60 Гц (1)				
LXM 05•D10M3X	5.2	4.2	2.7	2.2	VW3 A4 551	1.500
LXM 05•D17M3X	9	7.5	5.2	4.3	VW3 A4 552	3.000
LXM 05●D42M3X	19	15.8	12.2	10.2	VW3 A4 553	3.500
Трехфазное питающее напря	яжение: 38048	0 В 50/60 Гц (1)				
LXM 05•D14N4	4.2	3.3	2.2	1.8	VW3 A4 551	1.500
LXM 05●D22N4	6.3	5	3.4	2.7		
LXM 05•D34N4	9.7	7.7	5.8	4.6	VW3 A4 552	3.500
LXM 05•D57N4	17.7	14	9.8	7.8	_	
•						

(1) Номинальное питающее напряжение: U мин...U макс.

Преобразователи Lexium 05 Поставляемый по заказу контроллер тормоза

Контроллер тормоза

Если у серводвигателя есть тормоз, ему необходимо обеспечить соответствующее логическое управление(HBC, Holding Brake Controller – контроллер тормоза), которое реализует торможение, когда мощность, приложенная к серводвигателю, фиксирует вал серводвигателя в неподвижном состоянии.

Контроллер тормоза усиливает управляющий торможением сигнал, передаваемый преобразователем Lexium 05, так, что тормоз быстро выводится из работы. Затем уменьшается управляющий сигнал для того, чтобы уменьшить мощность, рассеиваемую тормозом.

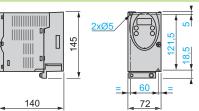
Основные		ICI PIKPI		
Монтаж на DIN-рейку				L 55
степень защиты				IP 20
Питающее напряжение		В	19.230	
Входной ток			Α	Номинальный ток тормоза +0.5
Выход тормоза	Напряжения	Перед снижением мощности	В	2325
		После снижения мощности	В	1719
	Максимальны	й ток	Α	1.6
Время перед снижением напряжения			мс	1000

Примечание: источник питания 24 В, вход управления и выход управления тормозом гальванически развязаны.

Каталожные номера

		-
VW3	M3	103

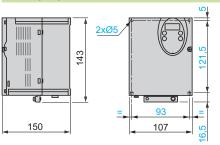
Контроллер тормоза			
Назначение	Описание	№ по каталогу	Масса кг
Контроллер тормоза	Источник питания 24 В Макс. мощность 50 Вт IP20 для монтажа на 55 мм 1∟г DIN-рейку	VW3 M3 103	0.600

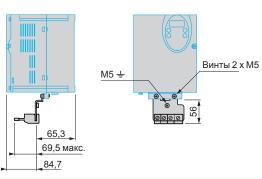

version: 1.1

Преобразователи Lexium 05A, 05B, 05C и комплекты для соответствия ЭМС

Размеры

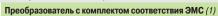
Преобразователи LXM 05●D10F1, LXM 05CU70M2, ●D10M2, LXM 05●D10M3X

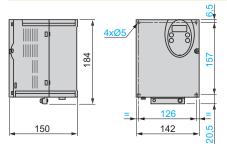

Только преобразователь

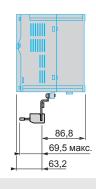


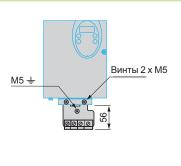
Преобразователи LXM 05•D17F1, LXM 05•D17M2, LXM 05•D17M3X, LXM 05•D14N4

Только преобразователь



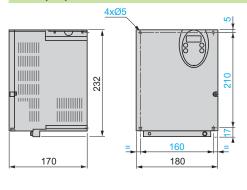

Преобразователь с комплектом соответствия ЭМС (1)

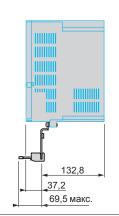


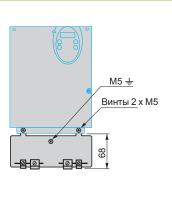

Преобразователи LXM 05•D28F1, LXM 05•D28M2, LXM 05•D42M3X, LXM 05•D22N4, ●D34N4

Только преобразователь





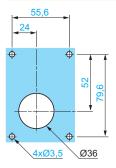



Преобразователи LXM 05●D57N4

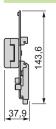
Только преобразователь

(1) Эти комплекты поставляются с преобразователями LXM 05A•••• и LXM 05B••••; для преобразователей LXM 05C••• они должны заказываться отдельно.

 Представление:
 Функции:
 Характеристики:
 Каталожные номера:
 Схемы:

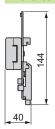

 стр. 61060/2
 стр. 61061/2
 стр. 61062/2
 стр. 61063/2
 стр. 61068/2

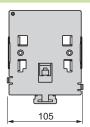
Поставляемые по заказу выносные терминалы дисплея, платы для монтажа на тр DIN-рейку и тормозные резисторы

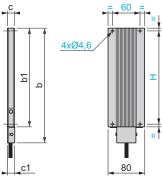

Размеры (продолжение)

Выносной терминал дисплея

VW3 A31101




Платы для монтажа на 🖵 DIN-рейку

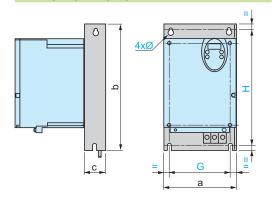

VW3 A31852

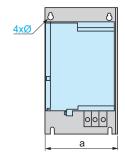
Тормозные резисторы

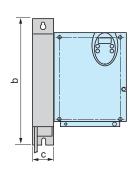
VW3	b	b1	С	c1	Н
A7 602, 605	145	110	15	15.5	98
A7 603, 606	251	216	15	15.5	204
A7 601, 604, 607	257	216	30	_	204

Схемы:

Устройство управления перемещениями Lexium 05 Поставляемые по заказу дополнительные входные


ЭМС фильтры и сетевые дроссели


Размеры (продолжение)

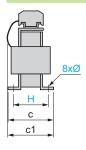

Дополнительные входные ЭМС фильтрыs VW3 A31401...407

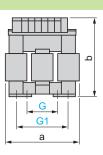
Монтаж фильтра под преобразователем

Монтаж фильтра рядом с преобразователем

VW3	а	b	С	G	H	Ø	
A31401, 402	72	195	37	52	180	4.5	
A31403	107	195	35	85	180	4.5	
A31404	107	195	42	85	180	4.5	
A31405	140	235	35	120	215	4.5	
A31406	140	235	50	120	215	4.5	
A31407	180	305	60	140	285	5.5	

Однофазный сетевой дроссель VZ1 L007UM50, VZ1 L018UM20



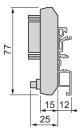


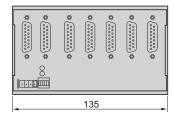
VZ1	a	b	С	G	Н		
L007UM50	60	100	95	50	60	4 x 9	
L018UM20	85	120	105	70	70	5 x 11	

Трехфазный сетевой дроссель

VW3 A4 551...553

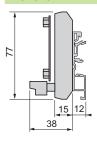
VW3	а	b	С	c1	G	G1	Н	
A4 551	100	135	55	60	40	60	42	6 x 9
A4 552	130	155	85	90	60	80.5	62	6 x 12
A4 553	130	155	85	90	60	80.5	62	6 x 12

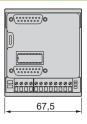

Schneider Electric


Поставляемые по заказу разветвительная коробка, USIC и контроллер тормоза

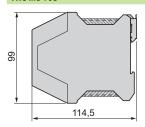
Размеры (продолжение)

Разветвительная коробка


VW3 M3 101



RS 422 converter (USIC)


VW3 M3 102

Контроллер тормоза

VW3 M3 103

Схемы: стр. 61068/20

Преобразователи Lexium 05A и 05B Требования техники безопасности

Функция защиты "Power Removal" - отключение силового питания

Преобразователи Lexium 05A и Lexium 05B имеют функцию защиты «Power Removal» — отключение силового питания, которая предотвращает непреднамеренное включение серводвигателя. Серводвигатель при этом больше не создает никакого вращающего момента.

Эта функция защиты:

- соответствует стандарту на защитные устройства механизмов ISO 13849-1, уровень производительности "d" (PL d);
- соответствует стандарту функциональной надежности MЭК/EN 61508, характеристика SIL2 (применение аппаратов защитного управления и сигнализации к процессам и системам). SIL (Safety Integrity Level —обобщенный уровень надежности) характеристика зависит от схемы соединения преобразователя и от функции защиты. Отказ соблюдать рекомендации по установке может снижать характеристику SIL функции защиты «Power Removal».
- соответствует стандарту на изделия MЭК/EN 61800-5-2 для обеих функций останова:
- □ безопасный режим без крутящего момента (Safe Torque Off «STO»);
- □ безопасный режим стопорение 1 (Safe Stop 1 «SS1») (1).

Функция защиты "Power Removal" имеет избыточную электронную архитектуру (1), которая непрерывно проверяется функцией диагностики.

Этот уровень PL d и функция безопасности SIL2 сертифицированы как соответствующие этим стандартам органом сертификации TÜV по программе добровольной сертификации.

Уровень производительности (Performance level — PL) согласно ISO 13849-1						
Уровень производительности PL	Средняя вероятность опасных отказов в час 1/ч					
a	$\geq 10^{-5} \text{ to} < 10^{-4}$					
b	≥3 x 10 ⁻⁶ to < 10 ⁻⁵					
С	$\geq 10^{-6} \text{ to} < 3 \times 10^{-6}$					
d	≥ 10 ⁻⁷ to < 10 ⁻⁶					
е	$\geq 10^{-8} \text{ to} < 10^{-7}$					

Примечание: в дополнение к средней вероятности необнаруженного опасного отказа за час, необходимы также другие критерии для того, чтобы достигнуть уровня производительности PL (performance level).

Примечание: преобразователи Lexium 05A и Lexium 05B могут использоваться вплоть до уровня производительности "d" (PL d).

Обобщенный уровень надежности (SIL) согласно IEC/EN 61508

SIL1 согласно стандарту MЭK/EN 61508 сопоставим с уровнями производительности "b" и "c" (PL b и PL c) согласно ISO13849-1 (SIL1: средняя вероятность необнаруженного опасного отказа в час между 10^{-5} и 10^{-6}).

SIL2 согласно стандарту MЭK/EN 61508 сопоставим с уровнем производительности "d" (PL d) согласно ISO 13849-1 (SIL2: средняя вероятность необнаруженного опасного отказа в час между 10^{-6} и 10^{-7}).

version: 3.1

61068-EN.indd

Schneider

⁽¹⁾ Резервирование: заключается в ослаблении последствий отказа одного компонента посредством надлежащей работы другого, при условии, что отказы не происходят одновременно на обоих.

⁽²⁾ Redundant: Consists of mitigating the effects of the failure of one component by means of the correct operation of another, assuming that faults do not occur simultaneously on both.

Преобразователи Lexium 05A и 05B Требования техники безопасности

Анализ функции защиты "Power Removal"

Функция защиты "Power Removal" не может рассматриваться как метод электрического отключения серводвигателя (без электрического отсоединения); в случае необходимости, должен использоваться выключатель разъединитель Vario.

Функция защиты "Power Removal" не предназначена для корректирования любого сбоя в процессе управления преобразователем или при выполнении прикладных задач.

Выходные сигналы, доступные в преобразователе, не должны рассматриваться как сигналы, связанные с защитой (например, активирован сигнал "Power Removal"); таковыми являются выходы модуля защиты типа Preventa (1), которые должны быть соединены с цепями управления и сигнализации аппаратов защиты.

Схемы на следующих страницах учитывают соответствие стандарту MЭK/EN 60204-1, который определяет три категории останова:

- Категория 0: останов посредством немедленного отключения питания от силовых приводов (например, неуправляемая остановка).
- Категория 1: управляемый останов с поддержанием питания на силовых приводах до остановки механизма, отключение силового питания происходит тогда, когда силовые привода останавливаются вместе с механизмом.
- Категория 2: управляемый останов с поддержанием питания на силовых приводах.

Схемы соединений и применения

Соответствие уровням производительности "b" и "c" (PL b и PL c) согласно ISO 13849-1 и к SIL1 согласно МЭК/EN 61508

Использование схем соединения на странице 61068/4, которые используют сетевой контактор или переключатель разъединитель Vario между преобразователем и серводвигателем. В этом случае функция защиты "Power Removal" не используется и серводвигатель стопорится в соответствии с категорией 0 стандарта MЭК/EN 60204-1.

Соответствие уровню производительности "d" (PL d) согласно с ISO 13849-1 и с SIL2 согласно с MЭК/EN 61508

Схемы соединений используют функцию защиты «Power Removal» преобразователей Lexium 05A и Lexium 05B в сочетании с модулем безопасности Preventa для контроля цепей аварийной остановки.

Механизмы с муфтой свободного хода и малыми временами остановки (малый момент инерции или большой момент сопротивления, см. страницу 61068/5).

Когда проходит команда активации на входы PWRR_A и PWRR_B от управляемого серводвигателя немедленно отключается электропитание и двигатель останавливается согласно **категории 0** из стандарта MЭK/EN 60204-1.

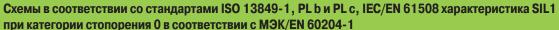
Перезапуск не разрешен, даже когда команда на включение дана после того, как серводвигатель совершил полную остановку.

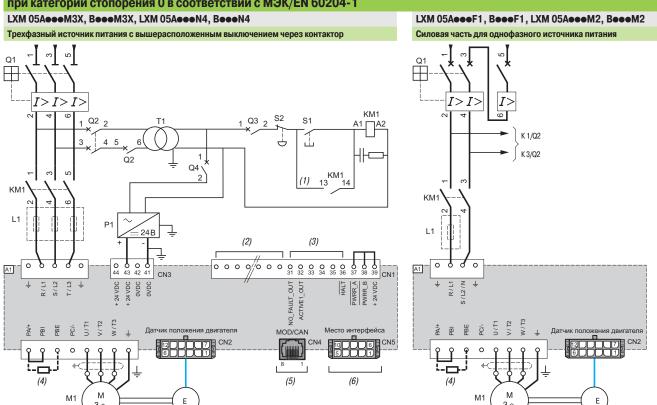
Эта безопасная остановка поддерживается до тех пор, пока входы $\overline{PWRR_A}$, и входы $\overline{PWRR_B}$ остаются активированными.

Для спускоподъемных операций необходимо добавить модуль защиты Preventa XPS AC-типа (1) (см. страницу 61068/6).

По команде "Power Removal" сервопривод требует наложения тормоза, но контакт модуля защиты Preventa должен быть включен последовательно в цепь управления тормозом, чтобы включить его безопасно, когда сделан запрос на включение функции защиты "Power Removal"

Механизмы с муфтой свободного хода и большими временами остановки


(большой момент инерции или малый момент сопротивления, см. страницу 61068/7). Если прошла команда активации, то сначала торможение серводвигателя, управляемого от преобразователя, лишь затребовано, затем следует временная задержка, управляемая модулем защиты Preventa XPS AV-типа (1), которая соответствует времени торможения, функция защиты "Power Removal" активируется посредством входов PWRR_B и PWRR_A. Серводвигатель останавливается в соответствии с категорией 1 стандарта MЭK/EN 60204-1 («SS1»).


Периодический тест

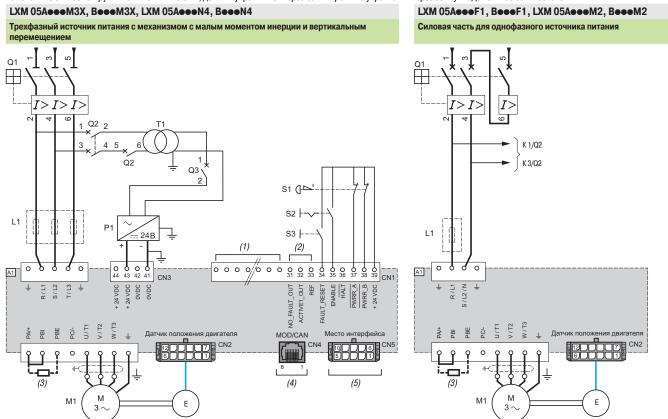
Вход защиты "Power Removal" должен быть активизирован для целей профилактического обслуживания по крайней мере один раз в год. Преобразователь должен быть выключен перед профилактическим обслуживанием и затем включен снова. Если источник питания серводвигателя не выключен во время тестирования, работоспособность защиты для функции "Power Removal" не гарантируется. Поэтому преобразователь должен быть заменен для гарантии эксплуатационной безопасности механизма или процесса в системе.

(1) Пожалуйста, справляйтесь с каталогом "Решения для защиты с использованием Preventa".

Преобразователи Lexium 05A и 05В

Примечание: все выводы расположены у основания преобразователя. Установите подавители помех во всех индуктивных цепях около преобразователя или подключенных к той же цепи, таких как реле, контакторы, соленоиды клапанов, освещение лампами дневного света, и т.д.

Совместимые компоненты (для получения полного списка каталожных номеров, пожалуйста, обращайтесь к каталогу «Пусковые устройства для двигателей - Компоненты управления и защиты»)


и защиты")	
Обозначение	Описание
A1	Преобразователь Lexium 05A или Lexium 05B (см. страницу 61063/2)
KM1	Сетевой контактор (см. пусковые устройства двигателей на странице 61069/2)
L1	Сетевой дроссель (см. страницу 61066/2)
M1	Серводвигатель BRH или BSH (см. страницу 61842/2 или 61852/2)
P1	Источник электропитания Phaseo (SELV) 24 В 🚃 , пожалуйста, обращайтесь к каталогу «Источники электропитания Phaseo и трансформаторы»
Q1	Выключатель (см. пусковые устройства двигателей на странице 61069/2)
Q2	Выключатель с магнитным расцепителем GV2-L, рассчитанный на двойной номинальный первичный ток в Т1
Q3, Q4	Выключатели с тепловыми и магнитными расцепителями GB2 CB05
S1, S2	Кнопки XB4 В или XB5 А «Пуск» и «Аварийный стоп»
T1	Трансформатор со вторичным напряжением 220 В
(4) B	A C NO FULL OUT (OL)

- (1) Включенный (последовательно) контакт реле, которое срабатывает по выходному логическому сигналу ошибки преобразователя» NO_FAULT_OUT» (31), при этом размыкается КМ1 (сетевой контактор).
- (2) Специальные пружинные клеммники соответствующие типу преобразователя (см. страницу 61068/13).
- (4) Внешний тормозной резистор (см. страницу 61064/5).
- (5) Машинная шина CANopen или последовательный канал связи Modbus с разъемом RJ45. Может также использоваться для подключения терминала персонального компьютера,
- ПК (с установленным программным обеспечением PowerSuite) или выносного терминала VW3 A31101.
- (6) Разъем Моleх для подключения сигналов энкодера А/В или сигналов импульс/направление (Р/D) (см. страницу 61068/18).

Преобразователи Lexium 05A и 05В

Схемы, соответствующие стандартам ISO 13849-1, PL d, IEC/EN 61508 характеристика SIL2 при категории стопорения 0 в соответствии с MЭК/EN 60204-1 (продолжение)

На схеме, приведенной ниже, показан локальный режим управления через логические вводы/выводы. В режиме управления через коммуникационную сеть входы, помеченные 34 и 35 на пружинном клеммнике CN1, должны управляться через сеть. В режиме управления через сеть у входов 34 и 35 есть назначения «LIMN» и «LIMP».

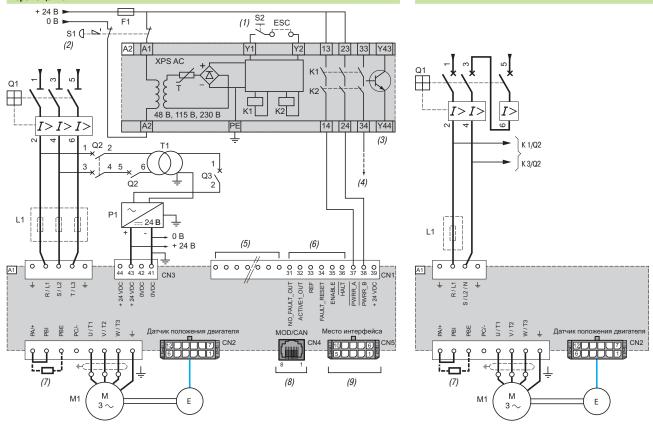
Примечание: все выводы расположены у основания преобразователя. Установите подавители помех во всех индуктивных цепях около преобразователя или подключенных к той же цепи, таких как реле, контакторы, соленоиды клапанов, освещение лампами дневного света, и т. д.

Совместимые компоненты (для полного списка каталожных номеров, пожалуйста, обращайтесь к каталогам «Пусковые устройства для двигателей - Компоненты управления и защиты»). Обозначение Преобразователь Lexium 05A или Lexium 05B (см. страницу 61063/2) Α1 L1 Сетевой дроссель (см. страницу 61066/2) М1 Серводвигатель BRH или BSH (см. страницу 61842/2 или 61852/2) Р1 Источник электропитания Phaseo (SELV) 24 В , пожалуйста, обращайтесь к каталогу «Источники электропитания Phaseo и трансформаторы» Q1 Выключатель (см. пусковые устройства двигателей на странице 61069/2) Q2 Выключатель с магнитным расцепителем GV2-L, рассчитанный на двойной номинальный первичный ток в Т1 03 Выключатели с тепловыми и магнитными расцепителями GB2 CB05 S1 Кнопка со сдвоенными контактами XB4 В или XB5 А «Аварийный стоп» S2 Кнопка с фиксацией XB4 В или XB5 А «Разрешение» **S**3 Кнопка XB4 В или XB5 А «Сброс» T1 Трансформатор со вторичным напряжением 220 В

- (1) Специальные пружинные клеммники соответствующие типу преобразователя (см. страницу 61068/13).
- (2) 1 логический вход и 2 логических выхода 24 В Для преобразователей Lexium 05А эти логические вводы/выводы переназначаемы (см. страницу 61068/13).
- (3) Внешний тормозной резистор (см. страницу 61064/5).
- (4) Машинная шина CANopen или последовательный канал связи Modbus с разъемом RJ45. Может также использоваться для подключения терминала персонального компьютера,
- ПК (с установленным программным обеспечением PowerSuite) или выносного терминала WW3 A31101.
- (5) Соединитель Molex для того, чтобы соединить сигналы энкодера А/В или сигналы импульс/направление (Р/D) (см. страницу 61068/18).

Преобразователи Lexium 05A и 05В

Схемы, соответствующие стандартам ISO 13849-1, PL d, IEC/EN 61508 характеристика SIL2, при категории стопорения 0 в соответствии с MЭК/EN 60204-1 (продолжение)


На схеме, приведенной ниже, показан локальный режим управления через логические вводы/выводы. В режиме управления через коммуникационную сеть входы, помеченные 34 и 35 на пружинном клеммнике CN1, должны управляться через сеть. В режиме управления через сеть у входов 34 и 35 есть назначения «ШМР».

LXM 05AeeeM3X, BeeeM3X, LXM 05AeeeN4, BeeeN4

Трехфазный источник питания с механизмом с малым моментом инерции и вертикальным перемещением

LXM 05AeeeF1, BeeeF1, LXM 05AeeeM2, BeeeM2

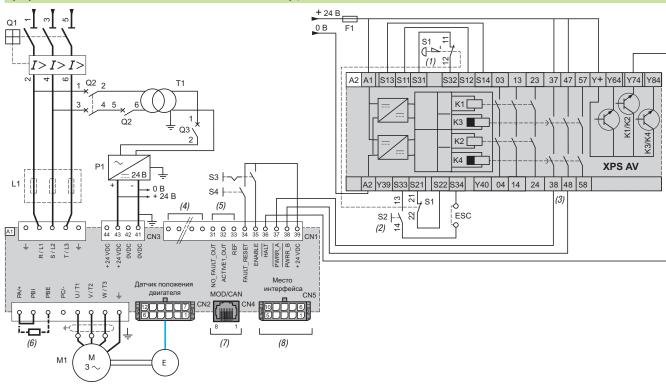
Силовая часть для однофазного источника питания

Примечание: все выводы расположены у основания преобразователя. Установите подавители помех во всех индуктивных цепях около преобразователя или подключенных к той же цепи, таких как реле, контакторы, соленоиды клапанов, освещение лампами дневного света, и т. д.

Совместимые компоненты (для полного списка каталожных номеров, пожалуйста, обращайтесь к каталогам «Пусковые устройства для двигателей - Компоненты управления и защиты» и «Надежные решения с применением Preventa»).

и «Надежные решения с пр	рименением Preventa»).
Обозначение	Описание
A1	Преобразователь Lexium 05A или Lexium 05B (см. страницу 61063/2)
A2	Модуль защиты Preventa XPS AC для автоматического контроля аварийных остановов и отключений. Модуль защиты XPS AC может управлять функцией «Power Removal» у нескольких преобразователей на том же механизме
F1	Предохранитель
L1	Сетевой дроссель (см. страницу 61066/2)
M1	Серводвигатель BRH или BSH (см. страницу 61842/2 или 61852/2)
P1	Источник электропитания Phaseo (SELV) 24 В 🚃 , пожалуйста обращайтесь к каталогу "Источники электропитания Phaseo и трансформаторы"
Q1	Автоматический выключатель (см. пусковые устройства двигателей на странице 61069/2)
Q2	GV2-L, рассчитанный на двойной номинальный первичный ток в Т1
Q3	Выключатель с магнитным расцепителем GB2 CB05 выключатели с тепловыми и магнитными расцепителями
S 1	Кнопка со сдвоенными контактами XB4 В или XB5 А «Аварийный стоп»
S2	Кнопка с пружинным возвратом XB4 В или XB5 А
T1	Трансформатор со вторичным напряжением 220 B

- (1) \$2: Устанавливает в исходное состояние модуль защиты XPS при включении питания или после аварийной остановки. ESC может использоваться для внешней установки начальных условий.
- (2) S1: Запрашивает неконтролируемую остановку движения и активизирует функцию защиты "Power Removal".
 (3) Логический выход может использоваться для указания, что механизм находится в безопасном состоянии останова.
- (4) К функции защиты "Power Removal" преобразователя с регулируемой скоростью Altivar 71 (для примера).
- (5) Специальные пружинные клеммники соответствующие типу преобразователя (см. страницу 61068/13).
- (7) Внешний тормозной резистор (см. страницу 61064/5).
- (8) Машинная шина САNopen или последовательный канал связи Modbus с разъемом RJ45. Может также использоваться для подключения терминала персонального компьютера,
- ПК (с установленным программным обеспечением PowerSuite) или выносного терминала WW3 A31101.
- (9) Соединитель Molex для того, чтобы соединить сигналы энкодера А/В или сигналы импульс/направление (Р/D) (см. страницу 61068/18).


Преобразователи Lexium 05A и 05В

Схемы, соответствующие стандартам ISO 13849-1, PL d, IEC/EN 61508 характеристика SIL2, при категории стопорения 1 в соответствии с MЭК/EN 60204-1

На схеме, приведенной ниже, показан локальный режим управления через логические входы/выходы. В режиме управления через коммуникационную сеть входы, помеченные 34 и 35 на пружинном клеммнике CN1, должны управляться через сеть. В режиме управления через сеть у входов 34 и 35 есть назначения «ШМР» и «ШМР»

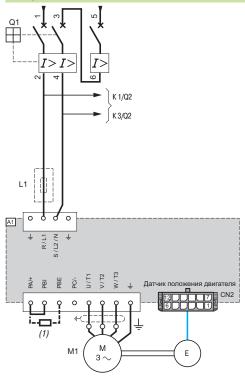
LXM 05AeeeM3X, BeeeM3X, LXM 05AeeeN4, BeeeN4

Трехфазный источник питания с механизмом с большим моментом инерции механизма

Примечание: все выводы расположены у основания преобразователя. Установите подавители помех во всех индуктивных цепях около преобразователя или подключенных к той же цепи, таких как реле, контакторы, соленоиды клапанов, освещение лампами дневного света, и т. д.

Совместимые компоненты (для полного списка каталожных номеров, пожалуйста, обращайтесь к каталогам «Пусковые устройства для двигателей - Компоненты управления и защиты» и «Надежные решения с применением Preventa»).

и «падежные решения с пр	именением гечения»).
Обозначение	Описание
A1	Преобразователь Lexium 05A или Lexium 05B (см. страницу 61063/2)
A2	Модуль защиты Preventa XPS AC для автоматического контроля аварийных остановов и отключений. Один модуль защиты XPS AC может управлять функцией защиты «Power Removal» у нескольких преобразователей на том же механизме, но временная задержка должна настраиваться по преобразователю, управляющему серводвигателем, который требует наибольшего времени останова
F1	Предохранитель
L1	Сетевой дроссель (см. страницу 61066/2)
M1	Серводвигатель BRH или BSH (см. страницу 61842/2 или 61852/2)
P1	Источник электропитания Phaseo (SELV) 24 В 🚃 , пожалуйста обращайтесь к каталогу «Источники электропитания Phaseo и трансформаторы»
Q1	Автоматический выключатель (см. пусковые устройства двигателей на странице 61069/2)
Q2	GV2-L, рассчитанный на двойной номинальный первичный ток в Т1
Q3	Выключатель с магнитным расцепителем GB2 CB05 выключатели с тепловыми и магнитными расцепителями
\$ 1	Кнопка со сдвоенными контактами XB4 В или XB5 А «Аварийный стоп»
52	Кнопка ХВ4 В или ХВ5 А кнопка «Пуск»
S3	Кнопка с фиксацией ХВ4 В или ХВ5 А «Разрешение»
64	Кнопка XB4 В или XB5 А «Сброс»
ſ1	Трансформатор со вторичным напряжением 220 В

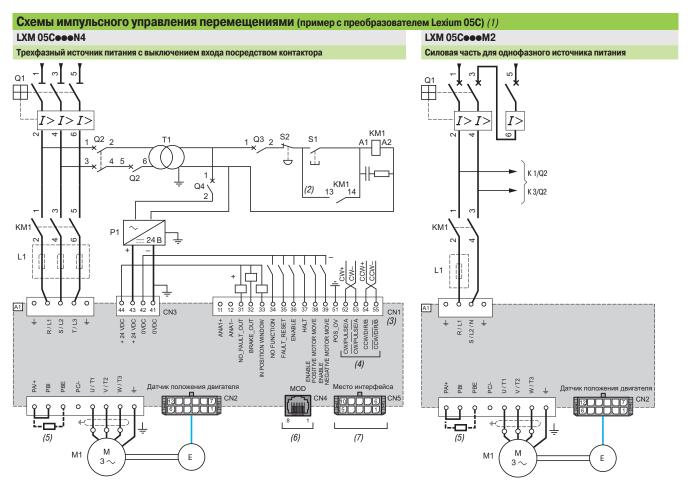

- (1) S1: Запрашивает управляемую остановку движения и активизирует функцию защиты "Power Removal"
- (1) 51: Запрашльвает управливает модуль XPS AV при включении питания или после аварийной остановки. ESC может использоваться для внешней установки начальных условий.
- (3) Открытые выходы защиты с временной задержкой до 300 секунд максимум (останов категории 1).
- (4) Специальные пружинные клеммники соответствующие типу преобразователя (см. страницу 61068/13).
- (5) 1 логический вход и 2 логических выхода 24 В Для преобразователей Lexium 05А эти логические вводы/выводы переназначаемы (см. страницу 61068/13).
- (6) Внешний тормозной резистор (см. страницу 61064/5).
- (7) Машинная шина CANopen или последовательный канал связи Modbus с разъемом RJ45. Может также использоваться для подключения терминала персонального компьютера,
- ПК (с установленным программным обеспечением PowerSuite) или выносного терминала WW3 A31101.
- (8) Соединитель Molex для того, чтобы соединить сигналы энкодера А/В или сигналы импульс/направление (Р/D) (см. страницу 61068/18).

Преобразователи Lexium 05A и 05В

Схемы, соответствующие стандартам ISO 13849-1, PL d, IEC/EN 61508 характеристика SIL2, при категории стопорения 1 в соответствии с MЭK/EN 60204-1 (продолжение)

LXM 05AeeeF1, BeeeF1, LXM 05AeeeM2, BeeeM2

Однофазный источник питания с механизмом с большим моментом инерции механизма

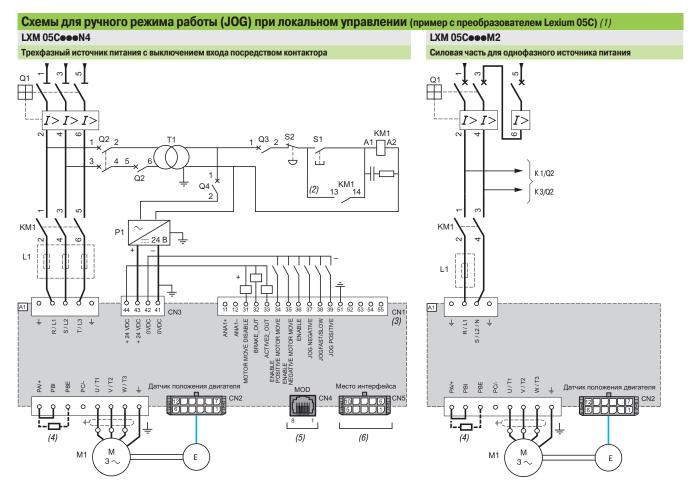

Примечание: все выводы расположены у основания преобразователя. Установите подавители помех во всех индуктивных цепях около преобразователя или подключенных к той же цепи, таких как реле, контакторы, соленоиды клапанов, освещение лампами дневного света, и т. д.

Совместимые компоненты (для полного списка каталожных номеров, пожалуйста, обращайтесь к каталогам «Пусковые устройства для двигателей - Компоненты управления и защиты» и «Надежные решения с применением Preventa»).

Обозначение	Описание	
A1	Преобразователь Lexium 05A или Lexium 05B (см. страницу 61063/2)	
L1	Сетевой дроссель (см. страницу 61066/2)	
M1	Серводвигатель BRH или BSH (см. страницу 61842/2 или 61852/2)	
Q1	Автоматический выключатель (см. пусковые устройства двигателей на странице 61069/2)	
Q2	GV2-L, рассчитанный на двойной номинальный первичный ток в Т1	

(1) Внешний тормозной резистор (см. страницу 61064/5).

Преобразователи Lexium 05A, 05B и 05С


Примечание: все выводы расположены у основания преобразователя. Установите подавители помех во всех индуктивных цепях около преобразователя или подключенных к той же цепи, таких как реле, контакторы, соленоиды клапанов, освещение лампами дневного света, и т. д.

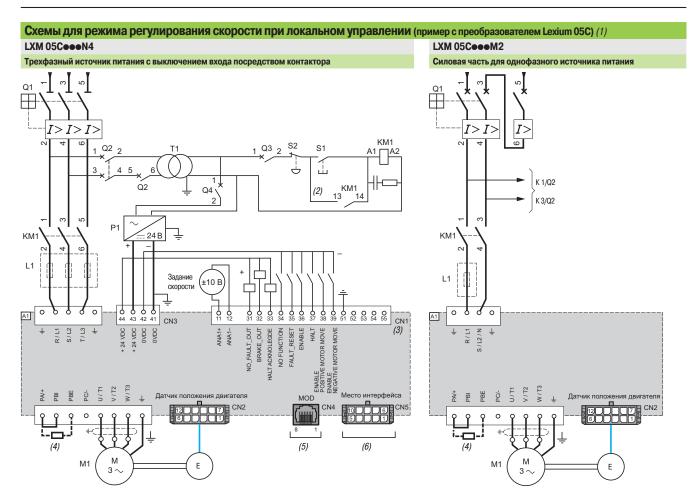
Совместимые компоненты (для п	олного списка каталожных номеров, пожалуйста, обращайтесь к каталогу «Пусковые устройства для двигателей - Компоненты управления и защиты»).
Обозначение	Описание
A1	Преобразователь Lexium 05C (этот пример), Lexium 05A (1) или Lexium 05B (1) (см. страницу 61063/2)
KM1	Сетевой контактор (см. пусковые устройства двигателей на странице 61069/2)
L1	Сетевой дроссель (см. страницу 61066/2)
M1	Серводвигатель BRH или BSH (см. страницу 61842/2 или 61852/2)
P1	Источник электропитания Phaseo (SELV) 24 В , пожалуйста обращайтесь к каталогу «Источники электропитания Phaseo и трансформаторы»
Q1	Автоматический выключатель (см. пусковые устройства двигателей на странице 61069/2)
Q2	GV2-L, рассчитанный на двойной номинальный первичный ток в Т1
Q3, Q4	Выключатель с магнитным расцепителем GB2 CB05 выключатели с тепловыми и магнитными расцепителями
\$1,\$2	Кнопки XB4 В или XB5 А «Пуск» и «Аварийный стоп»
T1	Трансформатор со вторичным напряжением 220 В

⁽¹⁾ Для подключения преобразователей Lexium 05A и Lexium 05B (разъемы CN1 и CN5), пожалуйста обращайтесь к руководствам пользователя, доступным на нашем вебсайте "www.schneider-electric.com".

- (2) Подключите (последовательно) контакт реле, включаемого логическим выходом «NO_FAULT_OUT» (31) при ошибке преобразователя, для размыкания КМ1 (сетевого контактора).
- (3) Пример назначений логических входов/выходов для импульсного управления преобразователем Lexium 05C. Наименования логических входов/выходов различаются в зависимости от выбранного назначения и типа преобразователя(Lexium 05A, Lexium 05B или Lexium 05C). См. страницы от 61068/13 до 61068/16.
- (4) По умолчанию установлена конфигурация последовательности импульсов СW/ССW (только для преобразователя Lexium 05).
- (5) Внешний тормозной резистор (см. страницу 61064/5).
- (б) Последовательный канал связи Modbus с разъемом RJ45. Может также использоваться для подключения терминала персонального компьютера, ПК (с установленным программным обеспечением PowerSuite) или выносного терминала W
- (7) Соединитель Molex для выходов сигналов имитации энкодера ESIM (Encoder SIMulation) по интерфейсу RS 422 (см. страницу 61068/19).

Преобразователи Lexium 05A, 05B и 05С

Примечание: все выводы расположены у основания преобразователя. Установите подавители помех во всех индуктивных цепях около преобразователя или подключенных к той же цепи,


таких как реле, контакторы,	соленоиды клапанов, освещение лампами дневного света, и т. д.
Совместимые компоне	енты (для полного списка каталожных номеров, пожалуйста, обращайтесь к каталогу «Пусковые устройства для двигателей - Компоненты управления и защиты»).
Обозначение	Описание
A1	Преобразователь Lexium 05C (этот пример), Lexium 05A (1) или Lexium 05B (1) (см. страницу 61063/2)
KM1	Сетевой контактор (см. пусковые устройства двигателей на странице 61069/2)
L1	Сетевой дроссель (см. страницу 61066/2)
M1	Серводвигатель BRH или BSH (см. страницу 61842/2 или 61852/2)
P1	Источник электропитания Phaseo (SELV) 24 В — , пожалуйста обращайтесь к каталогу «Источники электропитания Phaseo и трансформаторы»
Q1	Автоматический выключатель (см. пусковые устройства двигателей на странице 61069/2)
Q2	GV2-L, рассчитанный на двойной номинальный первичный ток в Т1
Q3, Q4	Выключатель с магнитным расцепителем GB2 CB05 выключатели с тепловыми и магнитными расцепителями
S1, S2	Кнопки XB4 В или XB5 А «Пуск» и «Аварийный стоп»
T1	Трансформатор со вторичным напряжением 220 В

- (1) Для подключения преобразователя Lexium 05A (разъемы CN1 и CN5), пожалуйста обращайтесь к руководствам пользователя, доступным на нашем вебсайте "www.schneider-electric.com". (2) Подключите (последовательно) контакт реле, включаемого логическим выходом «NO_FAULT_OUT» (31) при ошибке преобразователя, для размыкания КМ1 (сетевого контактора).
- (3) Пример назначений логических входов/выходов для ручного режима работы(JOG) с преобразователем Lexium 05C. Наименования логических входов/выходов различаются в зависимости от выбранного назначения (только для преобразователей Lexium 05A и Lexium 05C). См. страницы от 61068/14 до 61068/16.

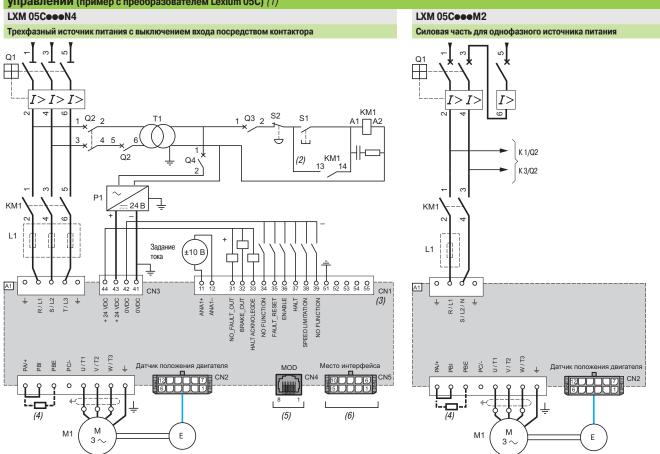
(4) Внешний тормозной резистор (см. страницу 61064/5).

- (5) Последовательный канал связи Modbus с разъемом RJ45. Может также использоваться для подключения терминала персонального компьютера, ПК (с установленным программным обеспечением PowerSuite) или выносного терминала VW3 A31101.
- (6) Соединитель Molex для выходов сигналов имитации энкодера ESIM (Encoder SIMulation) по интерфейсу RS 422 (см. страницу 61068/19).

Преобразователи Lexium 05А и 05С

Примечание: все выводы расположены у основания преобразователя. Установите подавители помех во всех индуктивных цепях около преобразователя или подключенных к той же цепи, таких как реле, контакторы, соленоиды клапанов, освещение лампами дневного света, и т. д.

Совместимые компоненты	ы (для полного списка каталожных номеров, пожалуйста, обращайтесь к каталогу «Пусковые устройства для двигателей - Компоненты управления и защиты»).
Обозначение	Описание
A1	Преобразователь Lexium 05C (этот пример) или Lexium 05A (1) (см. страницу 61063/2)
KM1	Сетевой контактор (см. пусковые устройства двигателей на странице 61069/2)
L1	Сетевой дроссель (см. страницу 61066/2)
M1	Серводвигатель BRH или BSH (см. страницу 61842/2 или 61852/2)
P1	Источник электропитания Phaseo (SELV) 24 В , пожалуйста обращайтесь к каталогу «Источники электропитания Phaseo и трансформаторы»
Q1	Автоматический выключатель (см. пусковые устройства двигателей на странице 61069/2)
Q2	GV2-L, рассчитанный на двойной номинальный первичный ток в Т1
Q3, Q4	Выключатель с магнитным расцепителем GB2 CB05 выключатели с тепловыми и магнитными расцепителями
S1, S2	Кнопки ХВ4 В или ХВ5 А «Пуск» и «Аварийный стоп»
T1	Трансформатор со вторичным напряжением 220 В


- (1) Для подключения преобразователя Lexium 05A (разъемы CN1 и CN5), пожалуйста обращайтесь к руководствам пользователя, доступным на нашем вебсайте "www.schneider-electric.com".
- (2) Подключите (последовательно) контакт реле, включаемого логическим выходом «NO_FAULT_OUT» (31) при ошибке преобразователя, для размыкания КМ1 (сетевого контактора).
 (3) Пример назначений логических входов/выходов для режима регулирования скорости с преобразователем Lexium 05C. Наименования логических входов/выходов различаются в зависимости от выбранного назначения (только для преобразователей Lexium 05C). См. страницы от 61068/14 до 61068/16.

(4) Внешний тормозной резистор (см. страницу 61064/5).

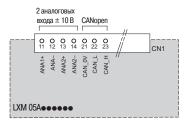
- (5) Последовательный канал связи Modbus с разъемом RJ45. Может также использоваться для подключения терминала персонального компьютера, ПК (с установленным программным обеспечением PowerSuite) или выносного терминала WW3 A31101.
- (6) Соединитель Molex для выходов сигналов имитации энкодера ESIM (Encoder SIMulation) по интерфейсу RS 422 (см. страницу 61068/19).

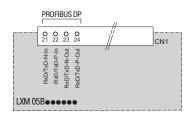
Преобразователи Lexium 05A и 05С

Схемы для режима регулирования тока для приложений с заданием вращающего момента при локальном управлении (пример с преобразователем Lexium 05C) (1)

Примечание: все выводы расположены у основания преобразователя. Установите подавители помех во всех индуктивных цепях около преобразователя или подключенных к той же цепи, таких как реле, контакторы, соленоиды клапанов, освещение лампами дневного света, и т. д.

ransis nan postoj normani opisij oosto	normal total and by observation and an action of observation of the state of the st
Совместимые компоненты	(для полного списка каталожных номеров, пожалуйста, обращайтесь к каталогу «Пусковые устройства для двигателей - Компоненты управления и защиты»).
Обозначение	Описание
A1	Преобразователь Lexium 05C (этот пример) или Lexium 05A (1) (см. страницу 61063/2)
KM1	Сетевой контактор (см. пусковые устройства двигателей на странице 61069/2)
L1	Сетевой дроссель (см. страницу 61066/2)
M1	Серводвигатель BRH или BSH (см. страницу 61842/2 или 61852/2)
P1	Источник электропитания Phaseo (SELV) 24 B — , пожалуйста обращайтесь к каталогу «Источники электропитания Phaseo и трансформаторы»
Q1	Автоматический выключатель (см. пусковые устройства двигателей на странице 61069/2)
Q2	GV2-L, рассчитанный на двойной номинальный первичный ток в Т1
Q3, Q4	Выключатель с магнитным расцепителем GB2 CB05 выключатели с тепловыми и магнитными расцепителями
S1, S2	Кнопки ХВ4 В или ХВ5 А «Пуск» и «Аварийный стоп»
T1	Трансформатор со вторичным напряжением 220 В

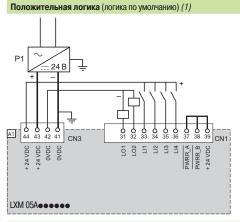

- (1) Для подключения преобразователя Lexium 05A (разъемы CN1 и CN5), пожалуйста обращайтесь к руководствам пользователя, доступным на нашем вебсайте "www.schneider-electric.com".
- (2) Подключите (последовательно) контакт реле, включаемого логическим выходом «NO_FAULT_OUT» (31) при ошибке преобразователя, для размыкания КМ1 (сетевого контактора).
- (3) Пример назначений логических входов/выходов для режима регулирования тока с преобразователем Lexium 05C. Наименования логических входов/выходов различаются в зависимости от выбранного назначения (только для преобразователей Lexium 05A и Lexium 05C). См. страницы от 61068/14 до 61068/16.
 (4) Внешний тормозной резистор (см. страницу 61064/5).
- (5) Последовательный канал связи Modbus с разъемом RJ45. Может также использоваться для подключения терминала персонального компьютера, ПК (с установленным программным обеспечением PowerSuite) или выносного терминала W/3 A31101.
- (6) Соединитель Molex для выходов сигналов имитации энкодера ESIM (Encoder SIMulation) по интерфейсу RS 422 (см. страницу 61068/19).

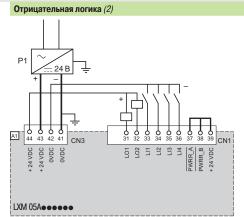

Преобразователи Lexium 05A, 05B и 05C Специальные пружинные клеммники, логические входы/выходы

Специальные пружинные клеммники на преобразователях Lexium 05A и Lexium 05B

LXM 05A • • • • •

LXM 05B •••••




Логические входы/выходы

Параметры преобразователя используются для адаптации логического воздействия логических входов/выходов (24В) на технические устройства периферии, подключенной ко входам /выходам преобразователя (датчики, входы исполнительных устройств, входы/выходы программируемых логических контроллеров и т.д.):

- Положительная логика (логика по умолчанию) (1) для связи с воспринимающими элементами в виде транзистора PNP
- Отрицательная логика (2) для связи с периферией транзистора NPN

Логические входы/выходы в преобразователях Lexium 05A

Совместимые компоненты	
Обозначение	Описание
A1	Преобразователь Lexium 05A (см. страницу 61063/2)
P1	Источник электропитания Phaseo (SELV) 24 В 🚃 , пожалуйста обращайтесь к каталогу «Источники электропитания Phaseo и трансформаторы»

- (1) Положительная логика: низкий уровень на входе, источник на выходе.
- (2) Отрицательная логика: источник на входе, низкий уровень на выходе.

Функции

Представление:

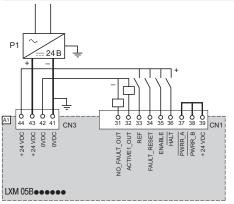
Каталожные номера:

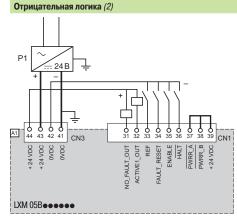
Размеры:

Устройство управления перемещениями Lexium 05 Преобразователи Lexium 05A

Логические входы/выходы

	входов/выходов преобразователя L									
Функции		6 логиче 24 В 	ских входов					2 логических выход 24 В —		
Имя	Описание	LI1	LI2	LI3	LI4	LI5	LI6	L01	L02	
No function/free available	Функция не задана/доступна свободно									
ENABLE	Разрешен измерительный мост мощности			(1)						
Enable negative motor move	Разрешение движения серводвигателя в обратном направлении									
Enable positive motor move	Разрешение движения серводвигателя в прямом направлении									
FAULT_RESET	Переустановка по ошибке/подтверждение приема									
HALT	Останов серводвигателя (категория стопорения 1)				(1)					
JOG fast/slow	Быстрое/медленное ручное перемещение									
JOG negative	Обратное ручное перемещение									
JOG positive	Ручное перемещение в положительном направлении									
Speed limitation	Ограничение скорости в соответствии с заданием									
DataSet Start	Начало циклического перемещения (режим циклического перемещения)									
DataSet Select	Перезапуск циклического перемещения (режим циклического перемещения)									
Start profile positioning	Начало позиционирования									
Invert ANA1	Инверсия аналогового входа ANA1									
Power Removal	Функция защитного отключения Power Removal					(1)	(1)			
ACTIVE2_OUT	Преобразователь готов									
BRAKE_OUT	Команда контроллера тормоза WW3 M3 103									
Current threshold reached	Ток серводвигателя меньше заданной величины									
Halt acknowledge	Подтверждение останова									
n position window	Отклонение положения в заданном диапазоне									
n speed window	Отклонение скорости в заданном диапазоне									
Motor move disable	Перемещение серводвигателя в заданном направлении невозможно									
NO_FAULT_OUT	Ошибка преобразователя									
DataSet Start acknowledge	Подтверждение запроса пуска (режим циклического перемещения)									
Motor stustill	Серводвигатель остановлен									
Speed threshold reached	Скорость серводвигателя меньше установленной величины									

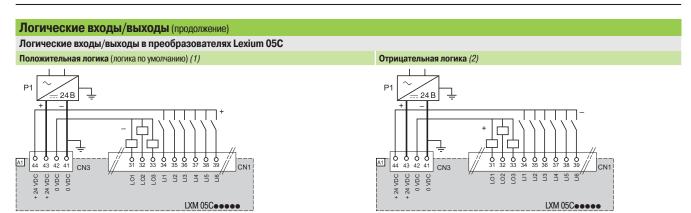

61068-EN.indd


Преобразователи Lexium 05В Логические входы/выходы

Логические входы/выходы (продолжение)

Логические входы/выходы в преобразователях Lexium 05B

Положительная логика (логика по умолчанию) (1)

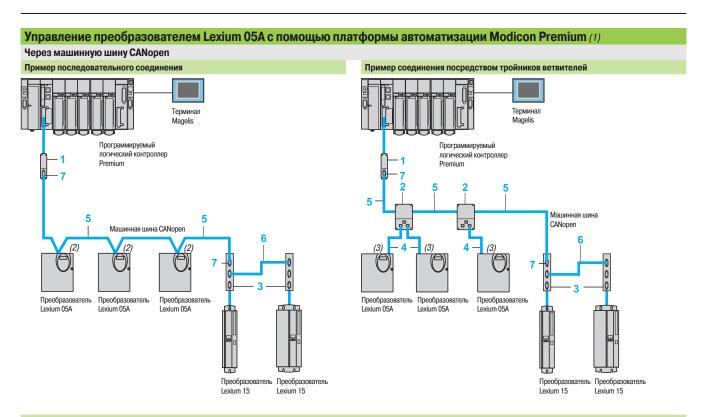

Совместимые компоненты	
Обозначение	Описание
A1	Преобразователь Lexium 05B (см. страницу 61063/2)
P1	Источник питания 24 В , Phaseo (SELV), пожалуйста обращайтесь к каталогу «Источники электропитаниям Phaseo и трансформаторы»

Назначение логических входов/выходов преобразователя Lexium 05A						
Функции		Логический вход	Логический выход			
Имя	ия Описание		№ контакта			
REF	Не используется (3)	33	-			
FAULT_RESET	Переустановка по ошибке/подтверждение приема (3)	34	-			
ENABLE	Разрешен измерительный мост мощности <i>(3)</i>	35	_			
HALT	Останов серводвигателя (категория стопорения 1)	36	-			
NO_FAULT_OUT	Ошибка преобразователя	-	31			
ACTIVE1_OUT	Команда контроллера тормоза VW3 M3 103	-	32			

- (1) Положительная логика: низкий уровень на входе, источник на выходе.
- (2) Отрицательная логика: источник на входе, низкий уровень на выходе.
 (3) Если преобразователь управляется через коммуникационную сеть, эти входы имеют различные назначения; пожалуйста, обратитесь к руководству пользователя, которое доступно на нашем вебсайте «www.schneider-electric.com».

Устройство управления перемещениями Lexium 05 Преобразователи Lexium 05C

Логические входы/выходы



Совместимые компоненты	
Обозначение	Описание
A1	Преобразователь Lexium 05С (см. страницу 61063/2)
P1	Источник электропитания Phaseo (SELV) 24 В = , пожалуйста обращайтесь к каталогу «Источники электропитания Phaseo и трансформаторы»

			6 логических входов 24 В —						3 логических выхода 24 В —		
Имя	Описание	LI1	LI2	LI3	LI4	LI5	LI6	L01	L02	LO3	
No function/free available	Функция не задана/доступна свободно										
ENABLE	Разрешен измерительный мост мощности			(3)							
Enable negative motor move	Разрешение движения серводвигателя в обратном направлении										
Enable positive motor move	Разрешение движения серводвигателя в прямом направлении										
FAULT_RESET	Переустановка по ошибке/подтверждение приема		(3)								
HALT	Останов серводвигателя (категория стопорения 1)				(3)						
JOG fast/slow	Быстрое/медленное ручное перемещение										
JOG negative	Ручное перемещение в обратном направлении										
JOG positive	Ручное перемещение в прямом направлении										
Speed limitation	Ограничение скорости, соответствующее заданной величине										
ACTIVE2_OUT	Преобразователь готов										
BRAKE_OUT	Команда контроллера тормоза W3 M3 103								(3)		
Current threshold reached	Ток серводвигателя меньше заданной величины										
Halt acknowledge	Подтверждение останова										
In position window	Отклонение положения в заданном диапазоне										
In speed window	Отклонение скорости в заданном диапазоне										
Motor move disable	Перемещение серводвигателя в заданном направлении невозможно										
NO_FAULT_OUT	Ошибка преобразователя							(3)			
Speed threshold reached	Скорость серводвигателя меньше заданной величины										

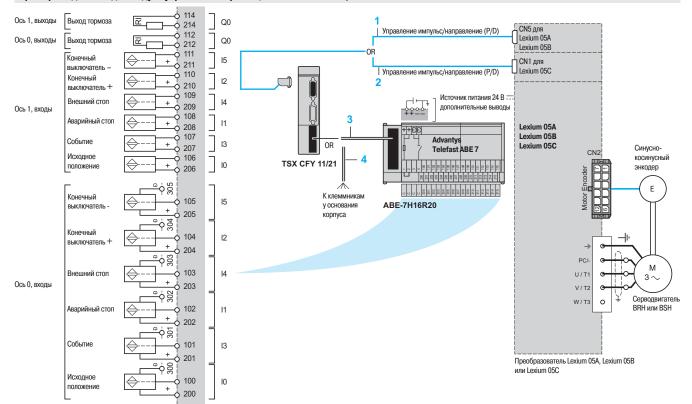
- (1) Положительная логика: низкий уровень на входе, источник на выходе.
- (2) Отрицательная логика: источник на входе, низкий уровень на выходе.(3) Присваивается по умолчанию.

Преобразователи Lexium 05А

Обозначение	Описание
1	Комплект карт РСМСIA с тройниковыми ветвителями и кабелем $L=0.5\mathrm{m.}$, TSX CPP 110
2	Распределительная коробка с 2 портами RJ45, W3 CAN TAP2 (4) (см. страницу 61063/4)
3	Адаптер шины CANopen для преобразователей Lexium 15 (интерфейс аппаратных средств стандарта CANopen), AM0 2CA 001V000
4	Кабель, снабженный 2 разъемами RJ45, VW3 CAN CARR03, 1 (L = 0.3 или 1 м) (см. страницу 61063/4)
5	Кабели CANopen, TSX CAN●CP 50, 100, 300 (L = 50, 100 или 300 м), с гибкими выводами на обоих концах (см. страницу 61063/4)
6	Кабель оснащенный 2 разъемами SUB-D (с 9 контактами, 1 штырьковый и 1 гнездовой), TLA CD CBA 005, 015, 030, 050 (L = 0.5, 1.5, 3 или 5 м)
7	Разъем SUB-D IP20 гнездовой с 9 контактами и с терминатором линии, TSX CAN KCDF 180T, 90T, 90TP (угловой, прямой или улговой с разъемом SUB-D для диагностического прибора) (см. страницу 61063/4)

⁽¹⁾ Для преобразователя Lexium 05A, управляемого программируемым контроллером Twido или контроллером перемещений Lexium Controller, см. страницу 61063/4.

Каталожные номера:

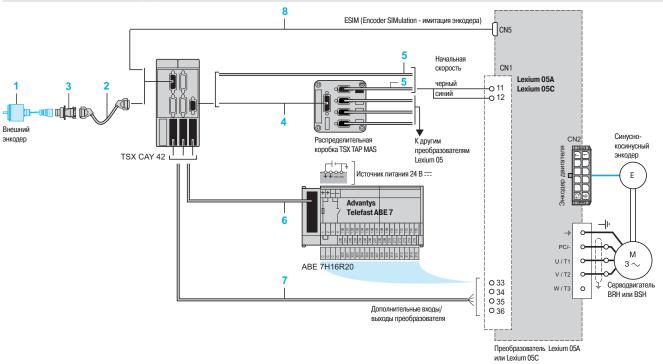

⁽²⁾ Соединение с пружинным клеммником (CN1). (3) Соединение с разъемом RJ45 (CN4).

⁽⁴⁾ Отключите оконечные резисторы линии в распределительной коробке W/3 CAN TAP2 (включены в преобразователь Lexium 05A).

Преобразователи Lexium 05A, 05B и 05C

Преобразователь Lexium 05A, 05B и 05C управляемые платформой автоматизации Modicon Premium

Пример соединения для модуля управления перемещениями TSX CFY 11/21



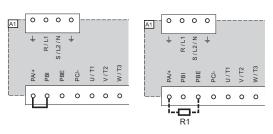
Обозначение	Описание
1	Кабель с разъемами WW3 M8 204 R05/R15/R30/R50 (L = 0.5, 1.5, 3 или 5 м) для преобразователей Lexium 05A и Lexium 05B (см. страницу 61063/6)
2	Кабель с разъемами WW3 M8 214 R05/R15/R30/R50 (L = 0.5, 1.5, 3 или 5 м) для преобразователя Lexium 05C (см. страницу 61063/6)
3	Кабель с разъемами TSX CDP 053/103/203/303/503 (L = 0.5, 1, 2, 3 или 5 м)
4	Многожильный кабель с разъемом на одном конце и свободным другим концом TSX CDP 301/501/1001 (L = 3, 5 или 10м). Пожалуйста, обращайтесь к руководству по установке TSX CFY, которое доступно на нашем вебсайте «www.schneider-electric.com».

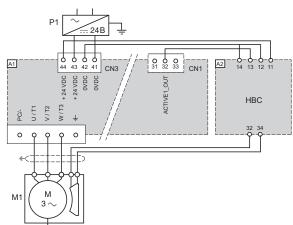
Преобразователи Lexium 05A и 05С

Преобразователь Lexium 05A и 05C управляемые платформой автоматизации Modicon Premium (продолжение)

Пример соединения для модуля управления перемещениями TSX CAY 21/41/22/42/33

Обозначение	Описание
1	Абсолютныйе или инкрементный энкодер. Возможно применить инкрементные энкодеры Osicoder® XCC 14, XCC 15 и XCC 19 или абсолютные энкодеры XCC 25 и XCC 29; пожалуйста, справляйтесь в каталоге «Вращающиеся энкодеры - Osicoder®»
2	Кабель с разъемами TSX CCP S15 050/100 и TSX CCP S15 (L = 0.5, 1 или 2.5 м)
3	Pasъeм TSXTAP S15 05
4	Кабель с разъемами TSX CXP 213/613 (L = 2.5 или 6 м)
5	Кабель с разъемами TSX CDP 611 (L = 6 м)
6	Кабель с разъемами TSX CDP 053/103/203/303/503 (L = 0.5, 1, 2, 3 или 5 м)
7	Многожильный кабель с разъемом на одном конце и свободным другим концом TSX CDP 301/501/1001 (L = 3, 5 или 10м)
8	Кабели WW3 M8 203 R05/R15/R30/R50 (L = 0.5, 1.5, 3 или 5 м) (см. страницу 61063/6)

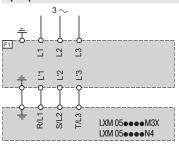

Преобразователи Lexium 05A, 05B и 05C Опции

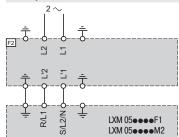

Контроллер тормоза VW3 M3 103

Тормозной резистор VW3 A7 60 ● R ● ●

Встроенный резистор

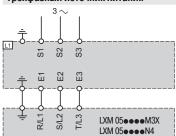
Внешний резистор

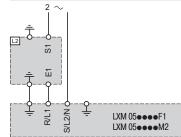



Совместимые компонент	ты
Обозначение	Описание
A1	Преобразователь Lexium 05 (см. страницу 61063/2)
A2	Контроллер тормоза W3 M3 103 (см. страницу 61066/3)
M1	Серводвигатель BRH или BSH (см. страницу 61842/2 или 61852/2)
P1	Источник электропитания Phaseo (SELV) 24 В, пожалуйста обращайтесь к каталогу "Источники электропитания Phaseo и трансформаторы"
R1	Внешний тормозной резистор W3 A7 60 • R • • . (см. страницу 61064/5)

Дополнительный входной ЭМС фильтр VW3 А3140 •

Трехфазный источник питания


Однофазный источник питания


Совместимые компоненты	
Обозначение	Описание
F1	Дополнительный трехфазный входной ЭМС фильтр VW3 A31402, 404, 406, 407 (см. страницу 61065/3)
F2	Дополнительный однофазный входной ЭМС фильтр W/3 А31401, 403, 405 (см. страницу 61065/3)
Примечание: дополнительный трехо	разный входной ЭМС фильтр подключается как можно ближе к преобразователю прямо на его входе.

Сетевые дроссели VW3 A4 552...554, VZ1 L0●●UM●0

Трехфазный источник питания

Однофазный источник питания

Совместимые компоненты	
Обозначение	Описание
L1	Трехфазный сетевой дроссель W3 A4 552, 553, 554 (см. страницу 61066/2)
L2	Однофазный сетевой дроссель VZ1 L0●●UM●0 (см. страницу 61066/2)

 Представление:
 Функции:
 Характеристики:
 Каталожные номера:
 Размеры:

 стр. 61064/2, 61065/2, 61066/2 и 61066/3 стр. 61061/2
 стр. 61064/4, 61065/3, 61066/2 и 61066/3 стр. 61064/5, 61065/3, 61066/2 и 61066/3 стр. 61067/3 - 61067/5

Преобразователи Lexium 05A, 05B и 05C

Подключение для гарантии соответствие стандартам ЭМС

Правила

- Заземления между преобразователем, серводвигателем и экранирующей оболочкой кабеля должны иметь «высокую степень» эквипотенциальности.
- Используйте для кабеля серводвигателя, кабеля тормозного резистора и кабелей управления и сигнализации экранированные кабели с экранами по всей окружности 360°, подключенными к земле с обоих концов. Труба или система металлических труб могут служить компонентом для участка экранирования только при условии, что нет никаких нарушений электропроводности земляных соединений.
- Обеспечьте максимальное расстояние между кабелем электропитания (сетевой источник) и кабелем двигателя

Чертеж установки преобразователя

Эта установка требует комплекта соответствия ЭМС.

Этот комплект, поставляемый с преобразователями Lexium 05A и Lexium 05B, для преобразователей Lexium 05C должен заказываться отдельно (см. страницу 61063/2).

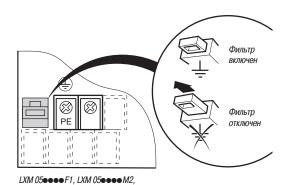
Комплект включает:

- Плату ЭМС 1
- Клеммы 5 и крепежные принадлежности
- 1 Стальная пластина для установки на преобразователь Lexium 05 (заземляющая плоскость)
- 2 Преобразователь Lexium 05
- 3 Неэкранированные провода электропитания или кабель
- 4 Неэкранированные провода для выходов контактов реле защиты
- 5 Экранированные кабели 6, 7, 8, 9 и 10 подсоединяются и заземляются как можно ближе к преобразователю:
- снимите экранирующую оболочку;
- прикрепите кабель к пластине 1, прикрепляя клемму к снятой части экранирующей оболочки. Экранирующая оболочка должна быть зажата достаточно сильно к стальной пластине, чтобы обеспечивать хороший контакт.
- 6 Экранированный кабель для подключения питания серводвигателя BRH или BSH
- 7 Экранированный кабель для подключения датчика положения серводвигателя BRH или BSH
- 8 Экранированный кабель для подключения интерфейса сигналов перемещения (CW/CCW, импульс/направление или A/B сигналов)
- 9 Экранированный кабель для подключения сетей коммуникации
- 10 Экранированный кабель для подключения тормозного резистора

Для кабелей 6, 7, 8, 9, 10, экранные оболочки должны быть связаны с землей в обоих концах. Экранирующая оболочка должна быть непрерывной и, если используются промежуточные клеммы, они должны быть помещены в экранированные металлические коробки отвечающие требованиям.

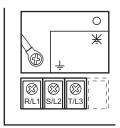
11 Землю привинчивают к кабелю серводвигателя

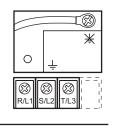
Примечание: высокая степень эквипотенциальности заземляющего соединения между преобразователем, серводвигателем и экранированным кабелем не снимает потребности в соединении защитных проводников РЕ (зелено-желтых) с соответствующими клеммами на каждом компоненте.


Если используется дополнительный входной фильтр ЭМС, он должен быть установлен под преобразователем и подсоединен непосредственно к питающей сети неэкранированным кабелем. Соединение 3 с преобразователем осуществляется выходным кабелем фильтра.

Работа в системе IT

Правила


IT система: изолированная или подключенная через сопротивление к земле нейтраль Постоянно используйте устройство контроля изоляции, совместимое с нелинейными нагрузками, такое как Merlin Gerin типа XM200 (пожалуйста, консультируйтесь в своем региональном коммерческом представительстве).


Преобразователи LXM 05●●●F1, LXM 05●●●M2 и LXM 05●●●N4 имеют встроенный ЭМС фильтр. Эти фильтры должны быть изолированы от земли для использования в системе IT. Способ этого отключения смотрите ниже в зависимости от модели.

LXM 05•D14N4...•D34N4

6

LXM 05●D57N4

 Представление:
 Функции:
 Характеристики:
 Каталожные номера:
 Размеры:

 стр. 61060/2
 стр. 61061/2
 стр. 61062/2
 стр. 61063/2
 стр. 61063/2
 стр. 61067/2

Пускорегулирующая аппаратура Защита автоматическими выключателями

Применения

Перечисленные ниже комплектации могут использоваться для создания завершенного узла пусковой аппаратуры электропривода включающей автоматический выключатель, контактор и преобразователь Lexium 05.

Автоматический выключатель обеспечивает защиту от случайных коротких замыканий, обрывов цепи и, в случае необходимости, блокировку.

Контактор ответственен за запуск и координацию любых элементов защиты, так же как и блокировку серводвигателя при остановке.

Преобразователь управляет серводвигателем, обеспечивает защиту от коротких замыканий между преобразователем и серводвигателем и защищает кабель электродвигателя от перегрузок. Защита от перегрузки обеспечивается тепловой защитой двигателя от преобразователя.

Преобразователь				Макс. лин. ток	Контактор	
№ по каталогу	Ном. мощность	№ по каталогу	Ном. ток	к.з.	№ по каталогу (1) (2)	
	кВт		Α	кА		
Однофазное пит	гающее напря	яжение: 100	120 B \sim	50/60 Гц		
LXM 05•D10F1	0.4	GV2 L14	10	1	LC1 K0610●●	
LXM 05•D17F1	0.65	GV2 L16	14	1	LC1 K0610 ••	
LXM 05●D28F1	1.4	GV2 L20	18	1	LC1 K0610●●	
Однофазное пит	гающее напря	яжение: 200	240 B \sim 9	50/60 Гц		
XM 05CU70M2	0.4	GV2 L14	10	1	LC1 K0610●●	
LXM 05⊕D10M2	0.75	GV2 L14	10	1	LC1 K0610 ••	
LXM 05⊕D17M2	1.2	GV2 L16	14	1	LC1 K0610 ••	
LXM 05●D28M2	2.5	GV2 L22	25	1	LC1 D09●●	
Трехфазное пит	ающее напря	жение: 200.	240 B \sim 5	0/60 Гц		
LXM 05 • D1 0M3X	0.75	GV2 L10	6.3	5	LC1 K0610●●	
LXM 05•D17M3X	1.4	GV2 L16	14	5	LC1 K0610 ••	
LXM 05•D42M3X	3.2	GV2 L22	25	5	LC1 D09••	

(1) Состав контакторов:

LXM 05 • D14N4

LXM 05 • D22N4

LXM 05 • D34N4

LXM 05 • D57N4

- LC1 K06: 3 полюса + 1 нормально разомкнутый дополнительный контакт

3

6

Трехфазное питающее напряжение: 380...480 В \sim 50/60 Гц

GV2 L14

GV2 L14

GV2 L16

GV2 L22

- LC1 D09: 3 полюса + 1 нормально разомкнутый дополнительный контакт + 1 нормально замкнутый дополнительный контакт

(2) Замените •• ссылкой на величину напряжения в цепи управления, приведенную ниже в таблице:

1-7,,							
	Вольты \sim	24	48	110	220	230	240
LC1 K	50/60 Гц	B7	E7	F7	М7	P7	U7
	Вольты \sim	24	48	110	220/230	230	230/240
LC1 D	50 Гц	B5	E5	F5	M5	P5	U5
	50 Гц	В6	E6	F6	М6	-	U6
	50/60 Гц	B7	E7	F7	M7	P7	U7

10

10

14

25

5

5

5

5

Для других доступных напряжений между 24 B и 660 B или для цепей управления постоянного тока, пожалуйста, консультируйтесь в своих региональных коммерческих представительствах.

GV2 L16 LC1 K0610 LXM 05 • D34N4

Schneider

61069-EN.indd

LC1 K0610●●

LC1 K0610●●

LC1 K0610●●

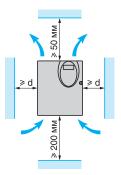
LC1 D09 ••

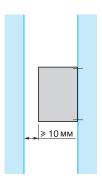
Устройство управления перемещениями Lexium 05 Пускорегулирующая аппаратура

Защита с применением предохранителей

Защита с применением предохранителей класса J fuses (стандарт UL)						
Преобразователь	Предохранитель,					
№ по каталогу	Номинальная мощность	расположенный на входе				
	кВт	A				
Однофазное питающее напряжение: 100120 В \sim 50/60 Гц						
LXM 05•D10F1	0.4	10				
LXM 05⊕D17F1	0.65	15				
LXM 05•D28F1	1.4	25				
Однофазное питающее напряжение: 200240 В \sim 50/60 Гц						
LXM 05CU70M2	0.4	10				
LXM 05⊕D10M2	0.75	10				
LXM 05⊕D17M2	1.2	15				
LXM 05•D28M2	2.5	25				
Трехфазное питающее напряжение: 200240 В \sim 50/60 Гц						
LXM 05•D10M3X	0.75	10				
LXM 05•D17M3X	1.4	15				
LXM 05•D42M3X	3.2	25				
Трехфазное питающее напряжение: 380480 В \sim 50/60 Гц						
LXM 05•D14N4	1.4	10				
LXM 05•D22N4	2	15				
LXM 05•D34N4	3	15				
LXM 05●D57N4	6	25				

Преобразователи Lexium 05

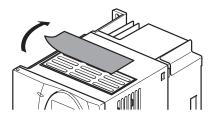

Рекомендации по монтажу


Преобразователи LXM 05 ● D10F1, LXM 05CU70M2, ● D10M2 и LXM 05 ● D10M3X охлаждаются естественной конвекцией.

Преобразователи LXM 05•D17F1, •D28F1, LXM 05•D17M2, •D28M2, LXM 05•D17M3X, •D42M3X и LXM 05••••N4 имеют встроенный вентилятор.

При установке преобразователя в электрическом шкафу, необходимо следовать инструкциям, приведенным ниже, в отношении температуры и степени защиты:

- обеспечьте достаточное охлаждение преобразователя, соблюдая минимальные монтажные расстояния;
- не устанавливайте преобразователь рядом с источниками тепла;
- не устанавливайте преобразователь на огнеопасные материалы;
- не нагревайте охлаждающий преобразователь воздух потоками горячего воздуха от другого оборудования и комплектующих, например, от внешнего тормозного резистора;
- если преобразователь эксплуатируется с превышением его тепловых ограничений, управляющее устройство вводит ограничения, соответствующие превышению температуры;
- когда достаточна степень защиты IP 20, мы рекомендуем, чтобы защитный кожух был удален сразу по завершении установки;
- устанавливайте преобразователь вертикально (± 10 %).



Примечание: для кабелей, которые подсоединены с нижней стороны преобразователя, требуется обеспечить под изделием свободное место ≥ 200 мм, чтобы соблюсти радиус изгиба соединительных кабелей.

Температура окружающего воздуха	Монтажные расстояния	Следуйте указаниям	
0°C+ 40°C	d > 50 mm	-	
	10 < d < 50 мм	Снимите защитный кожух	
	0 < d < 10 мм	Снимите защитный кожух	
+ 40°C+ 50°C	d > 50 мм	Снимите защитный кожух	
	d < 50 mm	Снимите защитный кожух Снижайте выходной ток на 2.2 % на каждый °С свыше 40°С	

Примечание: не применяйте изолированных шкафов, так как они имеют низкий уровень теплопроводности.

Снимите защитный кожух, если достаточна степень защиты IP 20

Преобразователи Lexium 05

Рекомендации по монтажу на стену или в напольный корпус

Для обеспечения хорошей циркуляции воздуха в преобразователе:

- устанавливайте вентиляционные решетки в шкафу;
- обеспечьте достаточную вентиляцию, если не установлено устройство принудительной вентиляции с фильтром;
- любые отверстия и/или вентиляторы должны обеспечить уровень потока, по крайней мере, равный потоку вентилятора преобразователя (см. ниже);
- используйте специальные фильтры со степенью защиты IP 54;
- удалите защитную крышку, прикрепленную к верхней части преобразователя.

Рассеиваемая мощность и величина потока вентилятора в зависимости от типа преобразователя

Преобразователь Рассеиваемая Вентиляция Номинальное значение					
преобразователь	МОЩНОСТЬ	Бентиляция	потока		
	Вт		м ³ /мин		
LXM 05•D10F1 LXM 05CU70M2 LXM 05•D10M2 LXM 05•D10M3X	43 38 48 43	Естественная вентиляция	0.3		
LXM 05•D17F1 LXM 05•D17M2 LXM 05•D17M3X LXM 05•D14N4	76 74 68 65	Встроенный вентилятор	0.55		
LXM 05•D28F1 LXM 05•D28M2 LXM 05•D42M3X LXM 05•D22N4 LXM 05•D34N4	150 142 132 90 147	Встроенный вентилятор	1.55		
LXM 05●D57N4	240	Встроенный вентилятор	1.75		

Шкаф защищенный от электропроводящей пыли и влажности, установленный на стене или на полу (степень защиты IP 54)

Преобразователь должен быть установлен в защищенном от пыли и влаги шкафу при определенных условиях окружающей среды, таких как пыль, едкие пары, высокая влажность с опасностью конденсации и капания воды, брызг жидкости, и т. д.

В этих случаях преобразователи Lexium 05 могут быть установлены в шкаф, где внутренняя температура не должна превысить 50°C.

Вычисление размеров шкафа

Максимальное тепловое сопротивление Rth (°C/Вт)

Тепловое сопротивление - определяется следующей формулой:

$$R_{th} = \frac{\theta^{\circ} - \theta e}{R}$$

 θ° = максимальная температура внутри шкафа в $^\circ$ С

 θ e = максимальная внешняя температура в °C

Р = суммарная мощность, рассеиваемая в шкафу в Вт

Мощность, рассеиваемая преобразователем: см. приведенную выше таблицу. Добавляем мощность, рассеянную другими компонентами оборудования.

Полезная площадь теплообмена корпуса S (м²)

Для установленного на стене шкафа полезная площадь теплообмена определяется как сумма площадей двух боковых сторон + верхняя сторона + передняя панель.

 $S = \frac{k}{R_{tb}}$

Характеристики:

k = тепловое сопротивление на 1 м² корпуса

Для металлического шкафа:

- k = 0.12 с внутренним вентилятором
- k = 0.15 без вентилятора

Примечание: не применяйте изолированных шкафов, так как они имеют низкий уровень теплопроводности.

Функции

Представление:

version: 1.1

Серводвигатели BRH

Серводвигатель BRH с прямыми разъемами

Характеристики

Серводвигатель BRH с вращающимися угловыми разъемами

Представление

Серводвигатели BRH представляют превосходное решение, отвечающее требованиям по быстроходности и точности регулирования скорости. Три типоразмера фланцев и номенклатура длин, позволяют найти отличное решение для большинства приложений, перекрывая непрерывный диапазон заданных крутящих моментов от 0.46 до 12 Нм и скоростей до 8000 об./мин.

Доступный для использования с серводвигателями BRH преобразователь Lexium 05 подает синусоидальное напряжение, гарантируя безупречное вращение даже на низкой скорости. Серводвигатели BRH доступны в трех типоразмерах фланцев: 57, 85 и 110 мм. Тепловая защита обеспечивается температурным датчиком, встроенным в серводвигатели. Они сертифицированы лабораторией по технике безопасности отметкой «Признано» № и соответствуют стандартам UL 1004, так же, как и европейским директивам (маркировка С €).

Имеются в наличии серводвигатели BRH следующих разновидностей:

- со степенью защиты IP 41 или IP 56;
- с тормозом или без него:
- с прямыми или угловыми разъемами;
- с одно или многооборотным синусно-косинусным датчиком положения;
- С гладким концом вала или со шпонкой.

Характеристики вращающий момент/скорость

Серводвигатели BRH обеспечивают параметры кривой вращающий момент/скорость аналогичные примеру, показанному слева:

- 1 Пиковый вращающий момент, в зависимости от модели серводвигателя
- 2 Продолжительный вращающий момент, зависящий от модели серводвигателя,

где:

- n_{max} (в об./мин) соответствует максимальной скорости серводвигателя
- М (в Н•м) представляет пиковый заданный вращающий момент
- M_o (в Н•м) представляет продолжительный заданный вращающий момент

Правило для определения типоразмера серводвигателя, соответствующего приложению

Кривые вращающий момент/скорость могут использоваться для определения надлежащего типоразмера серводвигателя:

- 1 Определяют рабочую зону работы приложения в единицах скорости.
- 2 Проверяют, используя временную диаграмму цикла серводвигателя, что вращающие моменты, требуемые практическим приложением на протяжении различных фаз цикла локализуются в пределах области

ограниченный кривой 1 рабочей зоны.

- **3** Вычисляют среднюю скорость n_{avg} и эквивалентный тепловой вращающий момент M_{eq} (см. страницу 61856/2).
- 4 Вычисляют среднюю скорость n _{avg} и эквивалентный тепловой вращающий момент M _{eq} должна быть расположена ниже кривой 2 в рабочей зоне.

Примечание: Для определения типоразмера серводвигателя, см. страницу 61856/2.

Функции

Основные функции

Серводвигатели BRH были разработаны отвечающими следующим требованиям:

- функциональные характеристики, прочность, безопасность, и т.д. соответствуют МЭК/EN 60034-1; рабочая температура окружающего воздуха:
- □ 20... 40°С согласно DIN 50019R14;
- □ максимум 55° С с уменьшением от 40° С номинальной выходной мощности на 1% от номинала на каждый дополнительный $^{\circ}$ С.
- относительная влажность: базирующаяся на средней за год ≤ 75 %, / базирующаяся на периоде 30 дней, без конденсации - 95 %;
- \blacksquare максимальная рабочая высота над уровнем моря: 1000 м. без уменьшения номинальных значений, 2000 м. с k = 0.86, 3000 м. с k = 0.8 (1);
- температура хранения и транспортировки: 25... 60°С;
- класс изоляции обмоток: F (максимальная температура для обмоток 150°C) согласно DIN VDE 0530;
- подключение силового питания и датчика положения через прямые или угловые разъемы;
- тепловая защита встроенным термисторным датчиком РТС, контролируемым преобразователем Lexium 05;
- эксценриситет, концентричность и перпендикулярность между фланцем и валом, соответствует DIN 42955, класс N;

61840-EN.indd

- фланец соответствует стандарту EN 50347:2001-07;
- разрешенные положения установки: никакие ограничения установки для IMB5 IMV1 и IMV3, согласно DIN 42950;
- краска на основе полиэфирной смолы: непрозрачная черная краска RAL 9005.

(1) к: фактор уменьшения номинальных значений:

Каталожные номера:

Серводвигатели BRH

Функции (продолжение)

Основные функции (продолжение)

- Степень защиты:
- □ корпус: IP 56 в соответствии с IEC/EN 60529;
- □ концевая часть вала: IP 41 или IP 56 в соответствии с МЭК/EN 60529 (1).
- Встроенный датчик: SinCos Hiperface® однооборотный или многооборотный датчик положения с высокой разрешающей способностью;
- Конец вала гладкий или со шпонкой со стандартными размерами (согласно EN 50347:2001-0).

Тормоз

Серводвигатели BRH могут быть оборудованы надежным электромагнитным тормозом.

⚠ Не используйте тормоз как активный тормоз для торможения, так как это быстро повредит его.

Встроенный датчик положения

По требованию серводвигатели BRH могут быть оборудованы одним из следующих SinCos Hiperface® абсолютных датчиков положения с высокой разрешающей способностью:

- однооборотный датчик положения (16 384 делений/оборот) (2) обеспечивающий угловую точность в пределах ±4.8 угловых минуты.
- \blacksquare однооборотный датчик положения (131 072 делений/оборот) (2) обеспечивающий угловую точность в пределах ± 1.3 угловых минуты.
- **м** многооборотный датчик положения (131 072 делений/оборот) (2) обеспечивающий угловую точность в пределах ± 1.3 угловых минуты.

Этот датчик положения выполняет следующие функции:

- передает угловое положение ротора так, что движение может быть синхронизировано;
- измеряет скорость серводвигателя посредством подключенного преобразователя Lexium 05.
 Эта информация используется регулятором скорости преобразователя.
- измеряет информацию о положении для регулятора положения преобразователя;
- измеряет информацию о положении и посылает её в инкрементном формате в цепь обратной связи по положению блока управления перемещением (ESIM (Encoder SIMulation имитация энкодера) выход с интерфейсом RS 422).

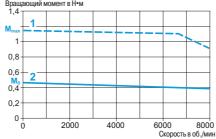
Описание

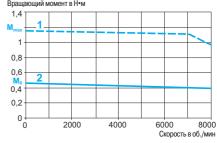
Серводвигатели BRH с 3-фазным статором и10-полюсным ротором с магнитами из сплава неодим-железо-бор (NdFeB), состоят из:

- 1 корпуса, защищенного непрозрачной черной краской RAL 9005
- 2 аксиального фланца с 4 точками крепления в соответствии с DIN 42948
- 3 стандартного конца вала в соответствии с DIN 42948, гладкого или со шпонкой (в зависимости от модели)
- 4 резьбового пыле и влагозащищенного штыревого прямого разъема для подключения силового кабеля (3)
- 5 резьбового пыле и влагозащищенного штыревого прямого разъема для подключения кабеля управления (датчик положения) (3)

Разъемы, которые должны заказываться отдельно, для соединения с преобразователем Lexium 05, см. страницу 61842/4.

Фирма Schneider Electric уделила особое внимание обеспечению совместимости между серводвигателем BRH и преобразователем Lexium 05. Эта совместимость может быть обеспечена только при использовании кабелей и разъемов, проданных фирмой Schneider Electric, см. страницу 61842/4.


- (1) ІР 41 при монтаже в положении IMV3 (вертикальная установка с концом вала наверху).
- (2) Разрешение датчика положения задано для использования с преобразователем Lexium 05.
- (3) Другая модель с вращающимся угловым разъемом.



Серводвигатели BRH

Тип серводвига	теля		BRH 0571P		BRH 057	'1T		
Трисоединенны	ій преобразователь Lexium 05		LXM 05 CU70M2	LXM 05 ●D14N4	LXM 05 ●D10F1	LXM 05 CU70M2	LXM 05 ●D10M2	LXM 05 ●D10M3X
етевое питаюш	ее напряжение	В	230, однофазный	400/480, трехфазный	115, однофазн	230, однофазнь	Й	230, трехфазный
астота коммута	щии	кГц	8			· · · · · · · · · · · · · · · · · · ·		
ращающий	Длительный при остановке M ₀	Н•м	0.46					
омент	Пиковый при остановке Ммах	Н•м	1.26	1.39	1.15	0.88	1.15	
оминальная	Номинальный момент	Н•м	0.43	0.41	0.43	0.41		
абочая точка	Номинальная скорость	об./мин	3000 6000 300		3000	6000		
	Выходная мощность серводвигателя	Вт	135	260	135	260		
lаксимальный т	ТОК	А _{ср. кв.}	4.3	5.4	6	4.3	6	
Характеристи	ки серводвигателей						•	
	веханическая скорость	об./мин	8000					
остоянные	Вращающий момент	, Н•м/А _{ср. кв.}	0.34		0.21			
ри 120°C)	Коэффициент противо-ЭДС	В _{ср. кв.} / об./мин	20.9		13.1			
отор	Числор полюсов		10					
	Момент Без тормоза J _м инерции	кг•см²	0.18					
	С тормозом 🗸 "	КГ•СМ ²	0.18					
татор	Сопротивление (фаза/фаза)	Ом	12.7		5			
ри 20°C) Индуктивность (фаза/фаза)		мГн	24.1		9.5			
	Электромагнитная постоянная времени	мс	1.9					
ерводвигател						Серводвигатель BRI		
преобразовате 30 В, однофазный	елем LXM 05CU70M2 i	С преобразов 400/480 В, трехо	ателем LXM 05 ●і фазный	D14N4		С преобразователем 115 В, однофазный	LXM 05⊕D10F1	
	II	Вращающий моме	ент в Н∙м			Вращающий момент в Н•м		
рашающий момент в	: H•M							
	H*M	M _{max}				1,4		
1,4 1	Hew	M _{max} 1,4			1.2			
1,4 1	HTM	M _{max} 1,4 1,2				1,4		
1,4 max 1,2	HTM	M _{max} 1,4 1,2 1			1.2	1,4 M _{max} 1		
1,4 1,2 1,2 1,0,8	H-M	M _{max} 1,4 1,2 1 0,8 2 4 10 6				1,4 M _{max} 1 0,8 0,6		
1,4 1,2 1,0,8 0,6 M ₀	H-M	M _{max} 1,4 1,2 1				1,4 M _{max} 1 0,8		
1,4 1,2 1,2 1 0,8 0,6 M ₀ 0,4	H-M	M _{max} 1,4 1,2 1 0,8 M ₀ -2.1/2.2				1,4 M _{max} 1 0,8 0,6 M ₀ 2		
1,4 1,2 1,2 1 0,8 0,6 M ₀ 0,4	2000 3000 4000 5000 6000 Скорость в об./мин	M _{max} 1,4 1,2 1 0,8 M ₀ 0,4				1,4 M _{max} 1 0,8 0,6 M ₀ 2 0,4	00 3000 40	00 5000 60(Скорость в об./м
1,4 1,2 1 1,2 1 1,2 1 1,2 1 1,2 1 1,2 1 1,2 1 1,2 1,2	2000 3000 4000 5000 6000	M _{max} 1,4 1,2 1 0,8 M ₀ 2.1/2.2 0,4 0,2	2-		1.1	1,4 M _{max} 1 0,8 0,6 0,4 0,4	00 3000 40	
1,4 1,2 1 1,2 1 1,0,8 0,6 0,6 0,4 0,2 0 1000	2000 3000 4000 5000 6000	M _{max} 1,4 1,2 1 0,8 M ₀ 2.1/2.2 0,4 0,2	2-		1.1	1,4 M _{max} 1 0,8 0,6 0,4 0,4	00 3000 40	
1.4 1 1 2.8 1.2 1 1 2.8 1.2 1 1 2.8 1.2 1 1 2.8 1 2.1 1 2.8 1 2.1	2000 3000 4000 5000 6000 Скорость в об./мин	M _{max} 1,4 1,2 1 0,8 M ₀ 0,4 0,2 0	2 2000 4000 ателем LXM 05•	Скорост	1.1	1,4 M _{max} 1 0,8 0,6 0,4 0,4		Скорость в об./м
1,4 1,4 1,2 1 0,8 0,6 0,6 0,4 0,4 0,2 0 1000 Серводвигатель преобразовате 30 В, однофазный	2000 3000 4000 5000 6000 Скорость в об./мин	М _{мах} 1,4 1,2 1 0,8 M ₀ 0,4 0,2 0 0 С преобразов 230 В, однофази	2 2000 4000 ателем LXM 05 о	Скорост	1.1	1,4 М _{тах} 1 0,8 0,6 0,4 0,2 0 1000 200 С преобразователем 230 В, трехфазный		Скорость в об./м
1,4 1,4 1,2 1 0,8 0,6 0,6 0,4 0,4 0,2 0 1000 Серводвигатель преобразовате 30 В, однофазный	2000 3000 4000 5000 6000 Скорость в об./мин	М _{мах} 1,4 1,2 1 0,8 М _о 0,4 0,2 0 0 С преобразов	2 2000 4000 ателем LXM 05 о	Скорост	1.1	1,4 м _{мах} 1 0,8 0,6 м ₆ 2 0,4 0,2 0 1000 200		Скорость в об./м
1,4 1 1 1 1,2 1 1 1,2 1 1 1,2 1 1 1 1,2 1 1 1 1	2000 3000 4000 5000 6000 Скорость в об./мин	М _{мах} 1,4 1,2 1 0,8 М _о 2.1/2.2 0 С преобразов 230 В, однофази	2 2000 4000 ателем LXM 05 о	Скорост	1.1	1,4		Скорость в об./м
1,4 1 1 0,8 0,6 2 0,4 0,2 0 1000 Серводвигателні преобразовате 30 В, однофазный раццающий момент в 1 1 1 0,8	2000 3000 4000 5000 6000 Скорость в об./мин	М _{мах} 1,4 1,2 1 0,8 М _о 0,4 0,2 0 0 С преобразов 230 В, однофази Вращающий моме 1,4 М _{мах}	2 2000 4000 ателем LXM 05 о	Скорост	1.1	1,4		Скорость в об./м
1,4 1 1 0,8 0,6 2 0,4 0,2 0 1000 Серводвигатель преобразовате 30 В, однофазный рашающий момент в 1 1 1 0,8 0,6 0,6 0,6 0,6 0 0 0 0 0 0 0 0 0 0 0 0	2000 3000 4000 5000 6000 Скорость в об./мин	М _{мах} 1,4 1,2 1 0,8 М _о 0,4 0,2 0 0 С преобразов 230 В, однофази Вращающий моме 1,4 1 0,8	2 2000 4000 ателем LXM 05 о	Скорост	1.1	1,4		Скорость в об./м
0,8 0,6 0,6 0,4 0,2 0 1000 Серводвигателно преобразовате 30 В, однофазный момент в 1 1 1 0,8	2000 3000 4000 5000 6000 Скорость в об./мин	М _{мах} 1,4 1,2 1 0,8 М _о 2.1/2.2 0 0 С преобразов 230 В, однофази Вращающий моме 1,4 М _{мах} 1 0,8 0,6	2 2000 4000 ателем LXM 05 о	Скорост	1.1	1,4		Скорость в об./м
1,4 1 1	2000 3000 4000 5000 6000 Скорость в об./мин	М _{мах} 1,4 1,2 1 0,8 М _о 0,4 0,2 0 0 С преобразов 230 В, однофази Вращающий моме 1,4 1 0,8	2 2000 4000 ателем LXM 05 о	Скорост	1.1	1,4		Скорость в об./м

- Продолжительный момент вращения

Пиковый момент вращения

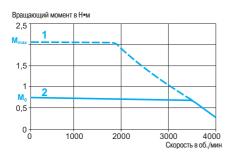
2000

6000 8000 Скорость в об./мин

- 1.1 Пиковый момент вращения при 400 В, 3 фазы
- 2.1 Продолжительный момент вращения при 400 В, 3 фазы
- 1.2 Пиковый момент вращения при 480 В, 3 фазы
- 2.2 Продолжительный момент вращения при 480 В, 3 фазы

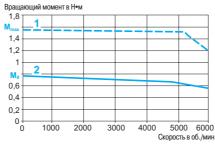
Представление: стр. 61840/2 Каталожные номера: стр. 61842/2

Размеры: стр. 61843/2

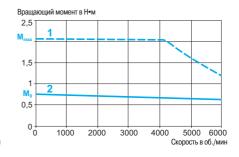

Серводвигатели BRH

Тип серводвига	теля			BRH 0572P					
Присоединенны	ый преобразователь Lexiun	05		LXM 05 ●D10F1	LXM 05 CU70M2	LXM 05 ●D10M2	LXM 05 ●D10M3X	LXM 05 ●D14N4	
Сетевое питающ	ее напряжение		В	115, однофазный 230, однофазный 230, трехфазный 400/480 трехфаз					
Іастота коммута	щии		кГц	8					
Вращающий <u>Д</u> лительный при остановке <mark>М</mark> _о		M _o	Н•м	0.76					
иомент	Пиковый при остановке	M _{max}	Н•м	2.07	1.55	2.07		2.46	
Номинальная	Номинальный момент		Н•м	0.73	0.7		0.64		
рабочая точка	Номинальная скорость		об./мин	1500	3000	00		6000	
Выходная мощность серводвигателя		вигателя	Вт	120	220		400		
Лаксимальный ток			А _{ср. кв.}	6	4.3	6		7.5	
Характеристи	ки серводвигателей								
Максимальная м	еханическая скорость		об./мин	8000					
Тостоянные	Вращающий момент		Н•м/А _{ср. кв.}	0.38					
при 120°C)	Коэффициент противо-ЭДО	;	В _{ср. кв.} / об./мин	24.3					
отор	Числор полюсов			10					
	Момент Без тормо: инерции	a J _m	кг•см²	0.26					
	С тормозо	и J _m	кг•см²	0.26					
Статор	Сопротивление (фаза/фаза)	Ом	6.7					
при 20°C)	Индуктивность (фаза/фаза) мГн		мГн	13.6					
	Электромагнитная постоян	ная времени	мс	2					
Гормоз (в зависи	иости от модели)			См. стр. 61844/2					

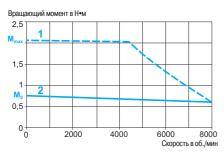
Серводвигатель BRH 0572P


С преобразователем LXM 05 • D10F1

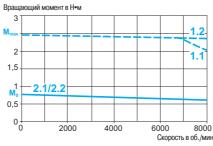
115 В, однофазный


С преобразователем LXM 05CU70M2

230 В, однофазный


С преобразователем LXM 05 • D10M2

230 В, однофазный


С преобразователем LXM 05 • D10M3X

230 В, трехфазный

С преобразователем LXM 05 • D14N4

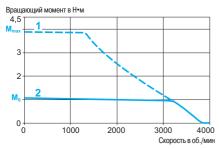
400/480 В, трехфазный

- Пиковый момент вращения
- Продолжительный момент вращения
- 1.1 Пиковый момент вращения при 400 В, трехфазный
- 2.1 Продолжительный момент вращения при 400 В,
- 1.2 Пиковый момент вращения при 480 В, трехфазный
- 2.2 Продолжительный момент вращения при 480 В,

Представление: стр. 61840/2

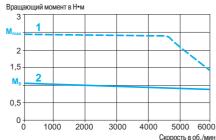
Каталожные номера: стр. 61842/2

стр. 61843/2

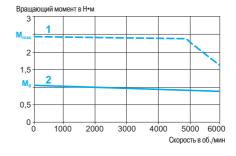

Серводвигатели BRH

Тип серводвига	теля				BRH 0573P					
Присоединенны	ый преобразовател	ıь Lexium 05			LXM 05 ●D17F1	LXM 05 ●D10M2	LXM 05 ●D10M3X	LXM 05 ●D14N4		
Сетевое питаюш	ее напряжение			В	115, однофазный	230, однофазный	230, трехфазный	400/480, трехфазный		
Настота коммута	щии			кГц	8					
Вращающий	Длительный при о	становке	M ₀	Н•м	1.05					
иомент	Пиковый при оста	новке	M _{мах}	Н•м	3.9	2.43		3		
Іоминальная	Номинальный мом	иент		Н•м	1	0.91		0.87		
рабочая точка	Номинальная скор	ООСТЬ		об./мин	1500	4500		6000		
Выходная мощность серводвигателя		Вт	160	430		550				
Лаксимальный ток			A _{ср. кв.}	10	7		10			
Характеристи	ки серводвигате	елей								
аксимальная механическая скорость			об./мин	8000						
Тостоянные	Вращающий момент		Н∙м/А _{ср. кв.}	0.42						
при 120°C)	Коэффициент про	тиво-ЭДС		В _{ср. кв.} / об./мин	27.2					
Ротор	Числор полюсов				10					
	Момент Без тормоза J _м кг-см ² инерции			кг•см²	0.34					
	С	тормозом	J _m	кг•см²	0.34					
Статор	Сопротивление (ф	раза/фаза)		Ом	5.2					
при 20°C)	Индуктивность (фа	аза/фаза)		мГн	11					
Электромагнитная постоянная времени		времени	мс	2.1						
ормоз (в зависи	иости от модели)				См. стр. 61844/2					

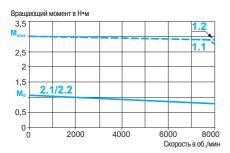
Серводвигатель BRH 0573P


С преобразователем LXM 05 • D17F1

115 В, однофазный


С преобразователем LXM 05 • D10M2

230 В, однофазный


С преобразователем LXM 05 • D10M3X

230 В, трехфазный

С преобразователем LXM 05 • D14N4

400/480 В, трехфазный

- Пиковый момент вращения
- Продолжительный момент вращения
- 1.1 Пиковый момент вращения при 400 В, трехфазный
- 2.1 Продолжительный момент вращения при 400 В, трехфазный
- 1.2 Пиковый момент вращения при 480 В, трехфазный
- 2.2 Продолжительный момент вращения при 480 В, трехфазный

Представление: стр. 61840/2

Каталожные номера: стр. 61842/2

стр. 61843/2

Серводвигатели BRH

Тип серводвига	теля		BRH 0574P					
Присоединенны	ий преобразователь Lexium 05		LXM 05 ●D17F1	LXM 05 ●D17M2	LXM 05 ●D17M3X	LXM 05 ●D22N4		
Сетевое питающ	ее напряжение	В	115, однофазный	230, однофазный	230, трехфазный	400/480, трехфазный		
Настота коммута	щии	кГц	8					
Вращающий	Длительный при остановке M ₀	Н•м	1.3	1.3				
момент Пиковый при остановке		Н•м	4.73			4.9		
Номинальная	Номинальный момент	Н•м	1.22	1.08	1			
рабочая точка	гочка Номинальная скорость об./мин 1500 4500			6000				
	Выходная мощность серводвигателя	Вт	190	510	630			
Максимальный т	гок	А _{ср. кв.}	11			11.35		
Характеристи	ки серводвигателей							
Максимальная м	еханическая скорость	об./мин	8000					
Тостоянные	Вращающий момент	Н•м/А _{ср. кв.}	0.46					
при 120°C)	Коэффициент противо-ЭДС	В _{ср. кв.} / об./мин	29.3	29.3				
Ротор	Числор полюсов		10					
	Момент Без тормоза J_{m} инерции	КГ•СМ ²	0.42					
	С тормозом Ј	кг•см²	0.42					
татор	Сопротивление (фаза/фаза)	Ом	4.3					
три 20°C)	Индуктивность (фаза/фаза)	мГн	9					
	Электромагнитная постоянная време	ни мс	2.1					
Гормоз (в зависим	иости от модели)		См. стр. 61844/2					

Характеристики вращающий момент/скорость

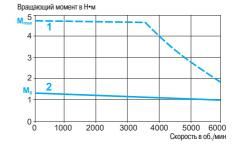
Серводвигатель BRH 0574P

С преобразователем LXM 05 • D17F1

115 В, однофазный

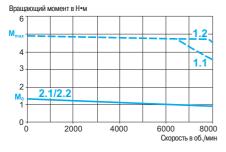
Вращающий момент в Н•м M_{max} 5 3000 4000 Скорость в об./мин 1000 2000

С преобразователем LXM 05 • D17M2


230 В, однофазный

Врашающий момент в Н•м

M_m5 2 2 0+0 5000 6000 Скорость в об./мин 1000 2000 3000 4000


С преобразователем LXM 05 ◆D17M3X

230 В, трехфазный

С преобразователем LXM 05 • D22N4

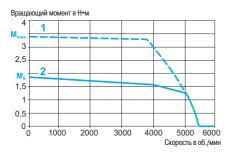
400/480 В, трехфазный

- Пиковый момент вращения
- Продолжительный момент вращения
- 1.1 Пиковый момент вращения при 400 В, трехфазный
- 2.1 Продолжительный момент вращения при 400 В, трехфазный
- 1.2 Пиковый момент вращения при 480 В, трехфазный
- 2.2 Продолжительный момент вращения при 480 В, трехфазный

Представление: стр. 61840/2

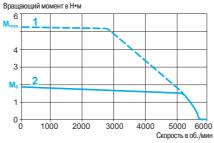
Каталожные номера: стр. 61842/2

стр. 61843/2

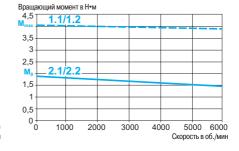

Серводвигатели BRH

Тип серводвига	теля		BRH 0851M				
Присоединенн	ый преобразователь Lexium 05		LXM 05 ●D10M2	LXM 05 ●D17M3X	LXM 05 ●D14N4		
Сетевое питаюц	цее напряжение	В	230, однофазный	230, трехфазный	400/480, трехфазный		
Частота коммута	ации	кГц	8				
Вращающий	Длительный при остановке $_{0}$	Н•м	1.86				
момент	Пиковый при остановке М _{мах}	Н•м	3.4	5.27	4.05		
Номинальная	Номинальный момент	Н•м	1.66		1.45		
рабочая точка	Номинальная скорость	об./мин	3000		6000		
	Выходная мощность серводвигателя	Вт	520		910		
Максимальный •	гок	А _{ср. кв.}	6	11	7.5		
Характеристи	ки серводвигателей						
Максимальная к	леханическая скорость	об./мин	6000				
остоянные при 120°C)	Вращающий момент	Н•м/А _{ср. кв.}	0.6				
	Коэффициент противо-ЭДС	В _{ср. кв.} / об./мин	37.9				
Ротор	Числор полюсов		10				
	Момент Без тормоза J_{m} инерции	KГ°CM ²	1.06				
	С тормозом J _m	KГ°CM ²	1.59				
Статор	Сопротивление (фаза/фаза)	Ом	3.3				
(при 20°C)	Индуктивность (фаза/фаза)	мГн	12.3				
	Электромагнитная постоянная времени	мс	3.7				
Тормоз (в зависи	мости от модели)		См. стр. 61844/2				

Серводвигатель BRH 0851M


С преобразователем LXM 05•D10M2

230 В, однофазный


С преобразователем LXM 05 • D17M3X

230 В, трехфазный

С преобразователем LXM 05 • D14N4

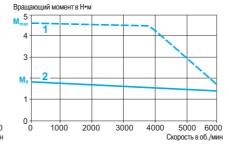
400/480 В, трехфазный

- Пиковый момент вращения
- Продолжительный момент вращения
- 1.1 Пиковый момент вращения при 400 В, трехфазный
- 2.1 Продолжительный момент вращения при 400 В, трехфазный
- 1.2 Пиковый момент вращения при 480 В, трехфазный
- 2.2 Продолжительный момент вращения при 480 В, трехфазный

Серводвигатели BRH

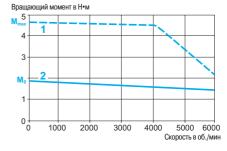
Тип серводвига	теля				BRH 0851P					
Присоединенны	ый преобразов	атель Lexium 05	i		LXM 05 •D17F1	LXM 05 ●D17M2	LXM 05 ●D17M3X	LXM 05 ●D22N4		
Сетевое питающ	цее напряжени	е		В	115, однофазный	230, однофазный	230, трехфазный	400/480, трехфазный		
Частота коммута	ации			кГц	8					
Вращающий	······································		M_{o}	Н•м	1.86					
момент Пиковый при остановке M _{мах}		M _{max}	Н•м	4.61		5.34				
Номинальная	Номинальный момент			Н•м	1.76	1.55		1.45		
рабочая точка	Номинальная скорость			об./мин	1500	4500		6000		
Выходная мощность серводвигателя			Вт	280	730		910			
Максимальный т	аксимальный ток			А _{ср. кв.}	11			14		
Характеристи	ки серводви	гателей								
Максимальная м	аксимальная механическая скорость о			об./мин	6000					
Постоянные	Вращающий	момент		Н•м/A _{ср. кв.}	0.48					
(при 120°C)	Коэффициен	г противо-ЭДС		В _{ср. кв.} / об./мин	30.5					
Ротор	Числор полю	СОВ			10					
	Момент инерции	Без тормоза	J _m	кг•см²	1.06					
		С тормозом	J _m	кг•см²	1.59					
Статор	Сопротивлен	ие (фаза/фаза)		Ом	2.1					
при 20°C)	Индуктивнос	Индуктивность (фаза/фаза) мГн			8					
	Электромагн	итная постоянная	времени	мс	3.8					
ормоз (в зависимости от модели)				См. стр. 61844/2						

Характеристики вращающий момент/скорость

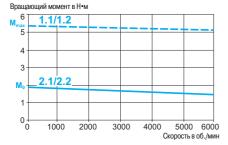

Серводвигатель BRH 0851P

С преобразователем LXM 05 • D17F1 115 В, однофазный

Вращающий момент в Н•м M_5 3000 4000 Скорость в об./мин 1000 2000


С преобразователем LXM 05 • D17M2

230 В, однофазный


С преобразователем LXM 05 • D17M3X

230 В, трехфазный

С преобразователем LXM 05 • D22N4

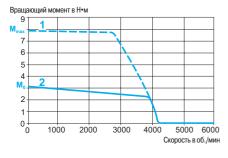
400/480 В, трехфазный

- Пиковый момент вращения
- Продолжительный момент вращения
- 1.1 Пиковый момент вращения при 400 В, трехфазный
- 2.1 Продолжительный момент вращения при 400 В, трехфазный
- 1.2 Пиковый момент вращения при 480 В, трехфазный
- 2.2 Продолжительный момент вращения при 480 В, трехфазный

Представление: стр. 61840/2

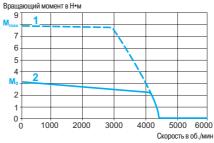
Каталожные номера: стр. 61842/2

стр. 61843/2

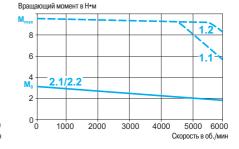

Серводвигатели BRH

Тип серводвига	теля		BRH 0852M				
Присоединенны	ый преобразователь Lexium 05		LXM 05 ●D17M2	LXM 05 ●D17M3X	LXM 05 •D22N4		
Сетевое питаюш	цее напряжение	В	230, однофазный	230, трехфазный	400/480, трехфазный		
Частота коммута	ации	кГц	8				
Вращающий			3.1				
момент	Пиковый при остановке М _{мах}	Н•м	7.81		9.51		
Номинальная	Номинальный момент	Н•м	2.45		1.8		
рабочая точка	Номинальная скорость	об./мин	3000	6000			
	Выходная мощность серводвигателя	Вт	770	1150			
Максимальный т	гок	A _{ср. кв.}	11		14		
Характеристи	ки серводвигателей						
Максимальная м	иеханическая скорость	об./мин	6000				
Іостоянные	Вращающий момент	Н∙м/А _{ср. кв.}	0.75				
при 120°C)	Коэффициент противо-ЭДС	В _{ср. кв.} / об./мин	49.2				
Ротор	Числор полюсов		10				
	Момент Без тормоза J _m кг•см²		2				
	С тормозом Ј	кг•см²	2.53				
Статор	Сопротивление (фаза/фаза)	Ом	2.5				
при 20°C)	Индуктивность (фаза/фаза)	мГн	9.5				
Электромагнитная постоянная времени		мс	3.8				
Гормоз (в зависи	мости от модели)		См. стр. 61844/2				

Серводвигатель BRH 0852M


С преобразователем LXM 05 • D17M2

230 В, однофазный


С преобразователем LXM 05 • D17M3X

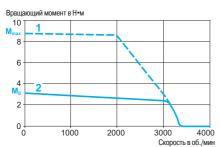
230 В, трехфазный

С преобразователем LXM 05 • D22N4

400/480 В, трехфазный

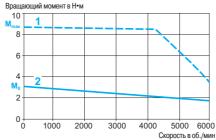
- Пиковый момент вращения
- Продолжительный момент вращения
- 1.1 Пиковый момент вращения при 400 В, трехфазный
- **2.1** Продолжительный момент вращения при 400 В, трехфазный
- 1.2 Пиковый момент вращения при 480 В, трехфазный
- **2.2** Продолжительный момент вращения при 480 B, трехфазный

Серводвигатели BRH

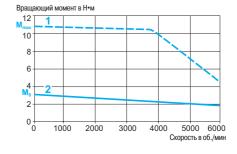

Тип серводвига	теля		BRH 0852P	BRH 0852P				
Присоединенны	ий преобразователь Lexium 05		LXM 05 ●D28F1	LXM 05 ●D28M2	LXM 05 ●D42M3X	LXM 05 •D34N4		
Сетевое питающ	ее напряжение	В	115, однофазный	400/480, трехфазный				
Настота коммута	ции	кГц	8					
Вращающий	Длительный при остановке M ₀	Н•м	3.1					
иомент	Пиковый при остановке М	Н•м	8.7 10.8		10.8	7.95		
Номинальная	Номинальный момент	Н•м	2.78	2.13		1.8		
рабочая точка	Номинальная скорость	ыная скорость об./мин 1500 4500		6000				
	Выходная мощность серводвигателя	Вт	440	1000	1000			
М аксимальный т	ток	А _{ср. кв.}	20		26.4	18		
Характеристи	ки серводвигателей							
Максимальная м	еханическая скорость	об./мин	6000					
Тостоянные	Вращающий момент	Н•м/А _{ср. кв.}	0.47					
при 120°C)	Коэффициент противо-ЭДС	В _{ср. кв.} / об./мин	30.7					
отор	Числор полюсов		10					
	Момент Без тормоза J _m инерции	кг•см²	2					
	С тормозом J _m	кг•см²	2.53					
татор	Сопротивление (фаза/фаза)	Ом	1					
три 20°C)	Индуктивность (фаза/фаза)	мГн	3.7					
	Электромагнитная постоянная врем	ени мс	3.7					
Гормоз (в зависим	иости от модели)		См. стр. 61844/2					

Характеристики вращающий момент/скорость

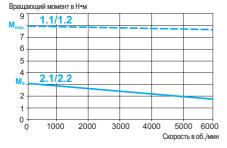
Серводвигатель BRH 0852P


С преобразователем LXM 05 • D28F1

115 В, однофазный


С преобразователем LXM 05 • D28M2

230 В, однофазный


С преобразователем LXM 05 • D42M3X

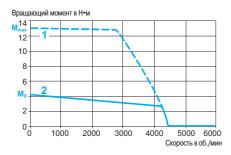
230 В, трехфазный

С преобразователем LXM 05 • D34N4

400/480 В, трехфазный

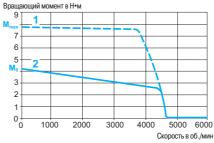
- Пиковый момент вращения
- Продолжительный момент вращения
- 1.1 Пиковый момент вращения при 400 В, трехфазный
- **2.1** Продолжительный момент вращения при 400 В, трехфазный
- 1.2 Пиковый момент вращения при 480 В, трехфазный
- 2.2 Продолжительный момент вращения при 480 B, трехфазный

Представление: стр. 61840/2 Каталожные номера: стр. 61842/2 Размеры: стр. 61843/2

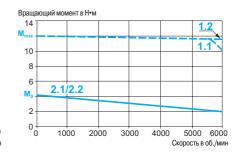

Серводвигатели BRH

Тип серводвига	теля		BRH 0853M				
Присоединенны	ый преобразователь Lexium 05		LXM 05 •D28M2	LXM 05 ●D17M3X	LXM 05 •D34N4		
Сетевое питаюц	цее напряжение	В	230, однофазный 230, трехфазный 400/480, трехфа				
Частота коммута	ации	кГц	8				
Вращающий	Длительный при остановке M ₀	Н•м	4.2				
момент	Пиковый при остановке М _{мах}	Н•м	13	7.73	12		
Номинальная	Номинальный момент	Н•м	3.1		2		
рабочая точка	Номинальная скорость	об./мин	3000		6000		
	Выходная мощность серводвигателя	Вт	970		1250		
Максимальный т	ток	А _{ср. кв.}	20	11	18		
Характеристи	ки серводвигателей						
Максимальная к	леханическая скорость	об./мин	6000				
остоянные	Вращающий момент	H•м/A _{ср. кв.}	0.72				
(при 120°C)	Коэффициент противо-ЭДС	В _{ср. кв.} / об./мин	46.8				
Ротор	Числор полюсов		10				
	Момент Без тормоза J_{m} инерции	кГ•СМ ²	2.9				
	С тормозом J _m	кг•см²	3.49				
Статор	Сопротивление (фаза/фаза)	Ом	1.4				
при 20°C)	Индуктивность (фаза/фаза)	мГн	5.5				
	Электромагнитная постоянная времени	мс	4.1				
Гормоз (в зависи	мости от модели)		См. стр. 61844/2				

Серводвигатель BRH 0853M


С преобразователем LXM 05 • D28M2

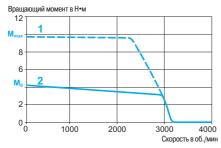
230 В, однофазный


С преобразователем LXM 05 • D17M3X

230 В, трехфазный

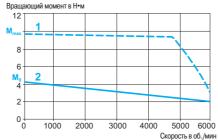
С преобразователем LXM 05 • D34N4

400/480 В, трехфазный

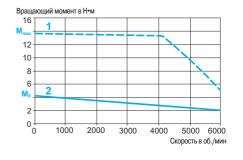

- Пиковый момент вращения
- Продолжительный момент вращения
- 1.1 Пиковый момент вращения при 400 В, трехфазный
- 2.1 Продолжительный момент вращения при 400 В, трехфазный
- 1.2 Пиковый момент вращения при 480 В, трехфазный
- 2.2 Продолжительный момент вращения при 480 В, трехфазный

Тип серводвига	теля		BRH 0853P			
Присоединенн	ый преобразователь Lexium 05		LXM 05 ●D28F1	LXM 05 ●D28M2	LXM 05 ●D42M3X	
Сетевое питаюц	цее напряжение	В	115, однофазный	230, однофазный	230, трехфазный	
Настота коммут	ации	кГц	8			
Вращающий	Длительный при остановке M ₀	Н•м	4.2			
момент	Пиковый при остановке М _{мах}	Н•м	9.7	9.7		
Номинальная	Номинальный момент	Н•м	3.65	2.55		
рабочая точка	Номинальная скорость	об./мин	1500	4500		
	Выходная мощность серводвигателя	Вт	570	1200		
Максимальный	ток	А _{ср. кв.}	20		30	
Характерист	ики серводвигателей					
Максимальная і	механическая скорость	об./мин	6000			
Постоянные	Вращающий момент	Н•м/А _{ср. кв.}	0.51			
(при 120°C)	Коэффициент противо-ЭДС	В _{ср. кв.} / об./мин	33			
Ротор	Числор полюсов		10			
	Момент Без тормоза J _m инерции	КГ•СМ ²	2.96			
	С тормозом Ј _т	кг•см²	3.49			
Статор	Сопротивление (фаза/фаза)	Ом	0.7			
при 20°C)	Индуктивность (фаза/фаза)	мГн	2.7			
Электромагнитная постоянная времени		и мс	4			
Тормоз (в зависимости от модели)			См. стр. 61844/2			

Серводвигатель BRH 0853P


С преобразователем LXM 05 • D28F1

115 В, однофазный

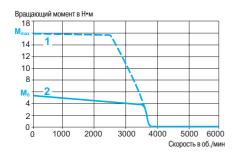

С преобразователем LXM 05 • D28M2

230 В, однофазный

С преобразователем LXM 05 • D42M3X

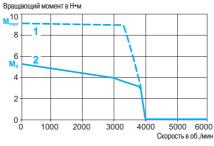
230 В, трехфазный

- Пиковый момент вращения
- Продолжительный момент вращения

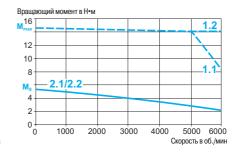

Серводвигатели BRH

Тип серводвига	теля		BRH 0854M					
Присоединенн	ый преобразователь Lexium 05		LXM 05 ●D28M2	LXM 05 •D17M3X	LXM 05 •D34N4			
Сетевое питаюц	цее напряжение	В	230, однофазный	230, трехфазный	400/480, трехфазный			
Частота коммут	ации	кГц	8					
Вращающий	Длительный при остановке M_0	Н•м	5.3					
момент	Пиковый при остановке М _{мах}	Н•м	15.8	9.2	14.5			
Номинальная	Номинальный момент	Н•м	4		2.2			
рабочая точка	Номинальная скорость	об./мин	3000		6000			
	Выходная мощность серводвигателя	Вт	1250		1400			
Максимальный	ток	А _{ср. кв.}	20	11	18			
Характеристь	ики серводвигателей							
Максимальная и	леханическая скорость	об./мин	6000					
Постоянные	Вращающий момент	Н•м/А _{ср. кв.}	0.86					
(при 120°C)	Коэффициент противо-ЭДС	В _{ср. кв.} / об./мин	55.3					
Ротор	Числор полюсов		10					
	Момент Без тормоза J_{m} инерции	кг•см²	3.9					
	С тормозом J _m	кг•см²	4.44					
Статор	Сопротивление (фаза/фаза)	Ом	1.4					
при 20°C)	Индуктивность (фаза/фаза)	мГн	5.7					
	Электромагнитная постоянная време	и мс	4.2					
ормоз (в зависи	мости от модели)		См. стр. 61844/2					

Серводвигатель BRH 0854M


С преобразователем LXM 05 • D28M2

230 В, однофазный


С преобразователем LXM 05 • D17M3X

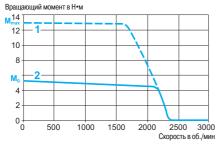
230 В, трехфазный

С преобразователем LXM 05 • D34N4

400/480 В, трехфазный

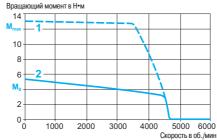
- Пиковый момент вращения
- Продолжительный момент вращения
- 1.1 Пиковый момент вращения при 400 В, трехфазный
- 2.1 Продолжительный момент вращения при 400 В, трехфазный
- 1.2 Пиковый момент вращения при 480 В, трехфазный
- 2.2 Продолжительный момент вращения при 480 В, трехфазный

Серводвигатели BRH

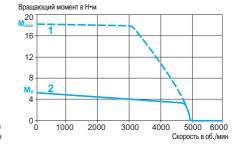

Тип серводвига	ателя				BRH 0854P				
Присоединенн	ый преобразова	тель Lexium 05	5		LXM 05 ●D28F1	LXM 05 ●D28M2	LXM 05 ●D42M3X	LXM 05 ●D22N4	
Сетевое питаюц	цее напряжение			В	115, однофазный	230, однофазный	230, трехфазный	400/480, трехфазный	
Частота коммута	ации			кГц	8				
Вращающий			M _o	Н•м	5.3			4.8	
момент Пиковый при остановке M _{мах}		M _{мах}	Н•м	13		18.3	9.3		
Номинальная	Номинальный момент			Н•м	4.71	4		2.2	
рабочая точка Номинальная скорость		скорость		об./мин	1500	3000		6000	
Выходная мощность серводвигателя			ателя	Вт	740	1250		1400	
Максимальный	аксимальный ток			А _{ср. кв.}	20		30	14	
Характеристи	ики серводвиг	ателей							
Максимальная м	иеханическая ск	орость		об./мин	6000				
Постоянные	Вращающий м	омент		Н•м/А _{ср. кв.}	0.68				
(при 120°C)	Коэффициент	противо-ЭДС		В _{ср. кв.} / об./мин	44				
Ротор	Числор полюс	ОВ			10				
	Момент инерции	Без тормоза	J _m	кг•см²	3.9				
		С тормозом	J _m	кг•см²	4.44				
Статор	Сопротивлени	е (фаза/фаза)		Ом	0.9				
при 20°C)	Индуктивность	Индуктивность (фаза/фаза) мГ			3.6				
	Электромагни	тная постоянная	времени	мс	4.2				
ормоз (в зависимости от модели)				См. стр. 61844/2					

Характеристики вращающий момент/скорость

Серводвигатель BRH 0854P


С преобразователем LXM 05 • D28F1

115 В, однофазный


С преобразователем LXM 05 • D28M2

230 В, однофазный

С преобразователем LXM 05 • D42M3X

230 В, трехфазный

С преобразователем LXM 05 • D22N4

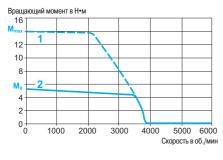
400/480 В, трехфазный

- Пиковый момент вращения
- Продолжительный момент вращения
- 1.1 Пиковый момент вращения при 400 В, трехфазный
- 2.1 Продолжительный момент вращения при 400 В, трехфазный
- 1.2 Пиковый момент вращения при 480 В, трехфазный
- 2.2 Продолжительный момент вращения при 480 В, трехфазный

Представление: стр. 61840/2

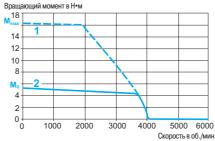
Каталожные номера: стр. 61842/2

стр. 61843/2

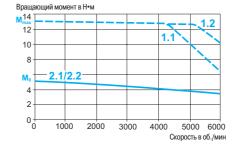

Серводвигатели BRH

Тип серводвига	теля		BRH 1101P				
Присоединенн	ый преобразователь Lexium 05		LXM 05 ●D28M2	LXM 05 ●D42M3X	LXM 05 ●D34N4		
Сетевое питаюц	цее напряжение	В	230, однофазный	230, трехфазный	400/480, трехфазный		
Частота коммут	ации	кГц	8		•		
Вращающий	Длительный при остановке $M_{\scriptscriptstyle{0}}$	Н•м	5.2				
момент	Пиковый при остановке М _{мах}	Н•м	14	16.2	13		
Номинальная	Номинальный момент	Н•м	4.5		4.04		
рабочая точка	Номинальная скорость	об./мин	3000		4500		
	Выходная мощность серводвигателя	Вт	1400		1900		
Л аксимальный ток		А _{ср. кв.}	20	30	18		
Характеристь	ики серводвигателей						
Максимальная и	иеханическая скорость	об./мин	6000				
Тостоянные	Вращающий момент	H•м/A _{ср. кв.}	0.83				
(при 120°C)	Коэффициент противо-ЭДС	В _{ср. кв.} / об./мин	54.2				
Ротор	Числор полюсов		10				
	Момент Без тормоза J_{m} инерции	кГ•СМ ²	4.5				
	С тормозом J _m	КГ°СМ ²	5.8				
Статор	Сопротивление (фаза/фаза)	Ом	1.2				
при 20°C)	Индуктивность (фаза/фаза)	мГн	8.1				
	Электромагнитная постоянная времени	мс	6.5				
Гормоз (в зависи	мости от модели)		См. стр. 61844/2				

Серводвигатель BRH 1101P


С преобразователем LXM 05 • D28M2

230 В, однофазный


С преобразователем LXM 05 • D42M3X

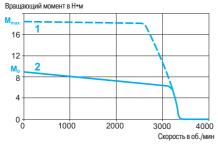
230 В, трехфазный

С преобразователем LXM 05 • D34N4

400/480 В, трехфазный

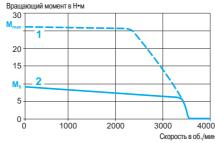
- Пиковый момент вращения
- Продолжительный момент вращения
- 1.1 Пиковый момент вращения при 400 В, трехфазный
- 2.1 Продолжительный момент вращения при 400 В, трехфазный
- 1.2 Пиковый момент вращения при 480 В, трехфазный
- 2.2 Продолжительный момент вращения при 480 В, трехфазный

Серводвигатели BRH

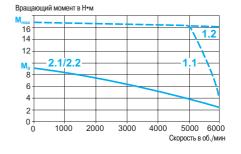

Тип серводвига	ателя				BRH 1102P				
Присоединенн	ый преобразов	атель Lexium 0	5		LXM 05 •D28M2	LXM 05 ●D42M3X	LXM 05 ●D34N4		
Сетевое питаюц	етевое питающее напряжение			В	230, однофазный 230, трехфазный		400/480, трехфазный		
Частота коммута	ации			кГц	8		·		
Вращающий	Длительный г	іри остановке	M _o	Н•м	9				
момент	Пиковый при	остановке	M _{мах}	Н•м	18.4	26	16.7		
Номинальная	Номинальный	і момент		Н•м	7.83		4.58		
рабочая точка	Номинальная	скорость		об./мин	1500		4500		
	Выходная мог	щность серводви	ателя	Вт	1250		2150		
Максимальный ток		А _{ср. кв.}	20	30	18				
Характеристи	ики серводви	гателей				·	·		
Максимальная к	иеханическая с	корость		об./мин	6000				
Постоянные	Вращающий	момент		Н•м/А _{ср. кв.}	0.96				
(при 120°C)	Коэффициент	г противо-ЭДС		В _{ср. кв.} / об./мин	62.1				
Ротор	Числор полю	СОВ			10				
	Момент инерции	Без тормоза	J _m	KГ°CM ²	8.8				
		С тормозом	J _m	кг•см²	10.1				
Статор	Сопротивлен	ие (фаза/фаза)		Ом	0.7				
при 20°C)	Индуктивност	гь (фаза/фаза)		мГн	4.9				
	Электромагні	итная постоянная	времени	мс	7.1				
	мости от модели)				См. стр. 61844/2	<u> </u>	·		

Характеристики вращающий момент/скорость

Серводвигатель BRH 1102P


С преобразователем LXM 05•D28M2

230 В, однофазный

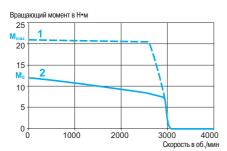

С преобразователем LXM 05 • D42M3X

230 В, трехфазный

С преобразователем LXM 05 • D34N4

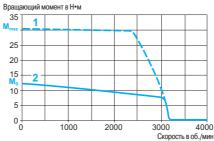
400/480 В, трехфазный

- Пиковый момент вращения
- Продолжительный момент вращения
- 1.1 Пиковый момент вращения при 400 В, трехфазный
- **2.1** Продолжительный момент вращения при 400 В, трехфазный
- 1.2 Пиковый момент вращения при 480 В, трехфазный
- **2.2** Продолжительный момент вращения при 480 B, трехфазный

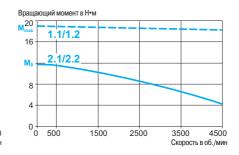

Серводвигатели BRH

Тип серводвига	этеля		BRH 1103P					
Присоединенн	ый преобразователь Lexium 05		LXM 05 ●D28M2	LXM 05 ●D42M3X	LXM 05 ●D34N4	LXM 05 ●D57N4		
Сетевое питаюц	Сетевое питающее напряжение		230, однофазный	230, однофазный 230, трехфазный 400/480, трехфазный				
Частота коммута	ации	кГц	8					
Вращающий	Длительный при остановке M _о	Н•м	12					
момент	Пиковый при остановке М	ах Н•м	21	30.3	18.9	30.3		
Номинальная	Номинальный момент	Н•м	10		7.5			
рабочая точка	Номинальная скорость	об./мин	1500		3000	3000		
	Выходная мощность серводвигател	я Вт	1550		2360			
Лаксимальный ток		А _{ср. кв.}	20	30	18	30		
Характеристи	ики серводвигателей							
Максимальная м	механическая скорость	об./мин	4500					
Постоянные	Вращающий момент	H•м/A _{ср. кв.}	1.06					
при 120°C)	Коэффициент противо-ЭДС	В _{ср. кв.} / об./мин	68.5					
Ротор	Числор полюсов		10					
	Момент Без тормоза J _м инерции	кг•см²	13.1					
	С тормозом Ј_	КГ•СМ ²	14.4					
Статор	Сопротивление (фаза/фаза)	Ом	0.5					
при 20°C)	Индуктивность (фаза/фаза)	мГн	3.9					
	Электромагнитная постоянная врег	иени мс	7.2					
Гормоз (в зависи	мости от модели)		См. стр. 61844/2					

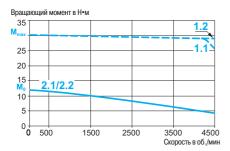
Серводвигатель BRH 1103P


С преобразователем LXM 05 • D28M2

230 В, однофазный

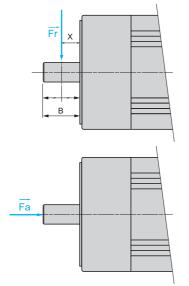

С преобразователем LXM 05 • D42M3X

230 В, трехфазный


С преобразователем LXM 05 • D34N4

400/480 В, трехфазный

С преобразователем LXM 05 • D57N4


400/480 В, трехфазный

- Пиковый момент вращения
- Продолжительный момент вращения
- 1.1 Пиковый момент вращения при 400 В, трехфазный
- 2.1 Продолжительный момент вращения при 400 В, трехфазный
- 1.2 Пиковый момент вращения при 480 В, трехфазный
- 2.2 Продолжительный момент вращения при 480 В, трехфазный

Представление: Каталожные номера: стр. 61840/2 стр. 61842/2 стр. 61843/2

Серводвигатели BRH

Допустимые радиальные и осевые усилия на валу двигателя

Даже при эксплуатации серводвигателей в оптимальных условиях, их срок службы ограничен сроком службы подшипников.

Условия	
Номинальный срок службы подшипников (1)	L _{10h} = 20,000 часов
Температура окружающего воздуха (температура подшипника \sim 100°C)	40°C
Точка приложения силы	Fr приложена к середине конца вала X = B/2 (измерение B, см. стр. 61843/2)

(1) Период времени эксплуатации с вероятностью появления отказа 10 %.

- Должны соблюдаться следующие условия:

 Радиальные и осевые усилия не должны быть приложены одновременно.

 Конец вала должен имеет степень защиты IP 41 или IP 56.
- Подшипники не могут быть заменены пользователем, поскольку встроенный датчик положения должен быть повторно выверен, если узел был разобран.

			Максимально	е радиальное у	силие Fr			
Механическая скорость		об./мин	1000	2000	3000	4000	5000	6000
Серводвигатель	BRH 0571	N	109	81	76	74	73	72
	BRH 0572	N	130	96	91	89	87	86
	BRH 0573	N	143	106	100	98	96	94
	BRH 0574	N	152	112	106	103	101	100
	BRH 0851	N	226	193	187	181	176	173
	BRH 0852	N	265	226	219	213	207	203
	BRH 0853	N	287	244	237	230	223	220
	BRH 0854	N	300	256	248	241	234	230
	BRH 1101	N	729	709	697	688	655	629
	BRH 1102	N	848	824	811	800	762	731
	BRH 1103	N	908	883	869	857	-	-

Максимальное осевое усилие: Fa = 0.2 x Fr

Кабели, оснащенные разъемом на стороне серво	пригатоля	
Тип кабеля	двигателя	VW3 M5 101 Reee
Внешняя оболочка, изоляционный материал		Полиуретан (RAL 2003 оранжевый), ТРМ или РР/РЕ
Погонная ёмкость	пФ/м	< 70 (проводники/экранирующая оболочка)
Количество проводников (с экраном)		$[(4 \times 1.5 \text{ mm}^2) + (2 \times 1 \text{ mm}^2)]$
Гип разъема		Один промышленный разъем M23 (на стороне серводвигателя) и свободный конец провода (на стороне преобразователя)
Внешний диаметр	мм	12±0.2
Радиус изгиба	мм	90, подходит для подключения шлейфом, кабельных каналов
Рабочее напряжение	В	600
Максимальная длина	М	75 (1)
Рабочая температура	°C	- 40+ 90 (стационарный), - 20+ 80 (передвижной)
Сертификаты		UL, CSA, VDE, C €, DESINA
Кабели, оснащенные разъемом на стороне серво	двигателя	
Тип кабеля		VW3 M5 301 R●●●●
Внешняя оболочка, изоляционный материал		Полиуретан (RAL 2003 оранжевый), ТРМ или РР/РЕ
Тогонная ёмкость	пФ/м	< 70 (проводники/экранирующая оболочка)
Количество проводников (с экраном)		$[(4 \times 1.5 \text{ mm}^2) + (2 \times 1 \text{ mm}^2)]$
Гип разъема		Примечание: см. стр. 61842/5
Внешний диаметр	мм	12±0.2
Радиус изгиба	мм	90,подходит для подключения шлейфом,кабельных каналов
Рабочее напряжение	В	600
Максимальная длина	м	100
Рабочая температура	°C	- 40+ 90 (стационарный), - 20+ 80 (передвижной)
Сертификаты		UL, CSA, VDE, C€, DESINA

⁽¹⁾ При длине кабелей более 75 м, пожалуйста, консультируйтесь в вашем региональном коммерческом представительстве.

Характеристики управляющих соедините	ельных кабел	пей серводвигателей/ и преобразователей
Кабели, оснащенные разъемами на обоих концах (у		
Тип кабеля		VW3 M8 101 Reee
Тип датчика положения		Синусно-косинусный датчик положения
Внешняя оболочка, изоляционный материал		Полиуретан (RAL 6018 зеленый), полиэстер
Количество проводников (с экраном)		[5 x (2 x 0.25 mm²) + (2 x 0.5 mm²)]
Внешний диаметр	мм	8.8 ± 0.2
Тип разъема		Один промышленный разъем M23 (на стороне серводвигателя) и 12-контактный гнездовой разъем Molex (на стороне преобразователя)
Радиус закругления	мм	68, подходит для подключения шлейфом, кабельных каналов
Рабочее напряжение	В	350 (0.25 мм²), 500 (0.5 мм²)
Максимальная длина	м	75 (1)
Рабочая температура	°C	- 50+ 90 (стационарный), - 40+ 80 (передвижной)
Сертификаты		UL, CSA, VDE, C €, DESINA
Кабели, оснащенные разъемом на стороне серводе	вигателя	
Тип кабеля		VW3 M8 221 R●●●●
Тип датчика положения		Синусно-косинусный датчик положения
Внешняя оболочка, изоляционный материал		Полиуретан (RAL 6018 зеленый), полиэстер
Количество проводников (с экраном)		[5 x (2 x 0.25 mm²) + (2 x 0.5 mm²)]
Внешний диаметр	мм	8.8 ± 0.2
Тип разъема		Пимечание: см. стр. 61842/5
Минимальный радиус закругления	мм	68,подходит для подключения шлейфом, кабельных каналов
Рабочее напряжение	В	350 (0.25 мм²), 500 (0.5 мм²)
Максимальная длина	м	100
Рабочая температура	°C	- 50+ 90 (стационарный), - 40+ 80 (передвижной)
Сертификаты		UL, CSA, VDE, C €, DESINA

⁽¹⁾ При длине кабелей более 75 м, пожалуйста, консультируйтесь в вашем региональном коммерческом представительстве.

кг 1.100

1.100

1.400

1.700

2.000

2.200

2.200

2.200

3.300

3.300

3.300

3.300

4.400

4.400

4.400

4.400

6.100

4.900

6.100

6.100

6.100

6.100

Серводвигатели BRH

Серводвигатели BRH

Серводвигатели BRH, указанные ниже, поставляются без редуктора.

О редукторах GBX см. страницу 61845/5.

BRH 05700 00A1A

*BRH 057***●● ●●***A2A*

Длительный крутящий момент при нулевой скорости	Пиковый крутящий момент при нулевой скорости	Номинальная выходная мощность серводвигателя	Номинальная скорость вращения	Максимальная механическая скорость вращения	Подключен- ный преобразова- тель LXM 05	№ по каталогу (1)
Н•м	Н•м	Вт	об./мин	об./мин		
0.46	0.88	260	6000	8000	CU70M2	BRH 0571T ●●●●A
	1.15	135	3000	8000	●D10F1	_
		260	6000	8000	●D10M2	_
		260	6000	8000	●D10M3X	
	1.26	135	3000	8000	CU70M2	BRH 0571P ●●●●A
	1.39	260	6000	8000	●D14N4	
0.76	1.55	220	3000	8000	CU70M2	BRH 0572P ●●●A
	2.07	120	1500	8000	●D10F1	
		220	3000	8000	●D10M2	
		400	6000	8000	●D10M3X	
	2.46	400	6000	8000	●D14N4	
1.05	2.43	430	4500	8000	●D10M2	BRH 0573P ●●●A
		430	4500	8000	●D10M3X	_
	3	550	6000	8000	●D14N4	
	3.9	160	1500	8000	●D17F1	_
1.3	4.73	190	1500	8000	●D17F1	BRH 0574P ●●●●A
		510	4500	8000	●D17M2	
		510	4500	8000	●D17M3X	_
	4.9	630	6000	8000	●D22N4	
1.86	3.4	520	3000	6000	●D10M2	BRH 0851M ●●●A
	4.05	910	6000	6000	●D14N4	_
	4.61	280	1500	6000	●D17F1	BRH 0851P ●●●A
		730	4500	6000	●D17M2	_
		730	4500	6000	●D17M3X	
	5.27	520	3000	6000	●D17M3X	BRH 0851M ••••A
	5.34	910	6000	6000	●D22N4	BRH 0851P ••••A
3.1	7.81	770	3000	6000	●D17M2	BRH 0852M ●●●A
		770	3000	6000	●D17M3X	
	7.95	1150	6000	6000	●D34N4	BRH 0852P ●●●A
	8.7	440	1500	6000	●D28F1	_
		1000	4500	6000	●D28M2	_

BRH 085●● ●●A2A

1150

1000

970

570

1200

1250

1250

1400

1900

1400

1400

1250

740

1250

1400

1250

1450

970

9.51

10.8

7.73

9.7

12

13

13.6

9.3

13

14

16.2

9.2

13

14.5

15.8

18.3

6000

4500

3000

1500

4500

6000

3000

6000

6000

4500

3000

3000

3000

1500

3000

6000

3000

4000

6000

6000

6000

6000

6000

6000

6000

6000

6000

6000

6000

6000

6000

6000

6000

6000

6000

6000

●D22N4

●D42M3X

●D17M3X

●D28F1

●D28M2

●D34N4

●D28M2

D42M3X

D22N4

■D34N4

●D28M2

D42M3X

■D17M3X

●D28F1

●D28M2

●D34N4

●D28M2

●D42M3X

BRH 0852M ●●●A

BRH 0852P ●●●A

BRH 0853M ●●●A

BRH 0853P ••••A

BRH 0853M ●●●●A

BRH 0853P ••••A

BRH 0854P ●●●A

BRH 1101P ••••A

BRH 0854M ••••A

BRH 0854P ••••A

BRH 0854M ●●●●A

BRH 0854P ••••A

 Представление:
 Характеристики:
 Размеры:

 стр. 61840/2
 стр. 61841/2
 стр. 61843/2

4.2

4.8

5.2

5.3

⁽¹⁾ Чтобы детализировать каждую ссылку, см. таблицу на странице 61842/3.

⁽²⁾ Масса серводвигателя без учета тормоза и без упаковки. Для получения массы серводвигателя с тормозом, см. страницу 61844/2.

Серводвигатели BRH

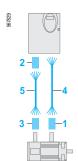
Серводвигатели BRH (продолжение) Длительный Пиковый Номинальная Максимальная Подключен-№ по каталогу Macca Номинальная крутящий крутящий выходная скорость механическая ный (2) момент преобразовамомент мощность вращения скорость при нулевой при нулевой серводвигателя вращения тель LXM 05 скорости скорости Н•м Вт об./мин об./мин ΚГ 9 16.7 2150 4500 6000 ●D34N4 BRH 1102P ••••A 7.700 18.4 1250 1500 6000 ■D28M2 26 1250 1500 6000 ●D42M3X 12 18.9 2360 3000 4500 ●D34N4 BRH 1103P ••••A 10.500 21 1550 1500 4500 ●D28M2 30.3 1550 1500 4500 ●D42M3X BRH 110**●● ●●**A2A 2360 3000 4500 ●D57N4

Для заказа	серводвига	теля BRH, детализируйте каждый приведенный выше	е каталожный	номер:			
		BRH 0571P	•	•	•	•	Α
Конец вала	IP41 Гладкий		0				
		Со шпонкой	1				
	IP 56	Гладкий	2				
		Со шпонкой	3				
Встроенный цатчик	Однооборотный, SinCos Hiperface® 16,384 делений/оборот (3)			0			
	Однооборотный, SinCos Hiperface® 131,072 делений/оборот (3)			1			
	Многооборо	тный, SinCos Hiperface® 131,072 делений/оборот x 4096 оборотов <i>(3)</i>		2			
Гормоз	Без				Α		
	С				F		
Разъемы	Прямые разъемы					1	
	Поворотные	угловые разъемы				2	
Р ланец	Международ	дный стандарт					A

Примечание: Пример, приведенный выше, для серводвигателя BRH 0571P. Замените BRH 0571P соответствующим каталожным номером для других серводвигателей.

⁽¹⁾ Чтобы детализировать каждую ссылку, см. таблицу, приведенную выше.

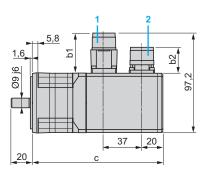
 ⁽²⁾ Масса серводвигателя без учета тормоза и без упаковки. Для получения массы серводвигателя с тормозом, см. страницу 61844/2.
 (3) Разрешение датчика, приведено для применения с преобразователем Lexium 05.



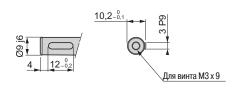
W/3 M5 101 R●●●

Элементы соединения	1					
Шнуры питания						
Описание	От серво- двигателя	К преобразо- вателю	Структура	Длина	№ по каталогу	Macca
				М		КГ
Кабель снабжен одним промышленным разъемом М23 (со стороны серводвигателя)	Зависит от тания, см с	LXM 05•••••, зависит от соче-	[(4 x 1.5 мм²) +	3	VW3 M5 101 R30	0.810
		тания, см стр. 61841/2 - 61841/16	(2 x 1 мм²)]	5	VW3 M5 101 R50	1.210
				10	VW3 M5 101 R100	2.290
				15	VW3 M5 101 R150	3.400
				20	VW3 M5 101 R200	4.510
				25	VW3 M5 101 R250	6.200
				50	VW3 M5 101 R500	12.325
				75	VW3 M5 101 R750	18.450

Шнуры управления						
Описание	От серво- двигателя	К преобразо- вателю	Структура	Длина	№ по каталогу	Macca
				М		КГ
Кабель датчика положения SinCos Hiperface® снабжен	BRH ••••	LXM 05•••••	[5 x (2 x 0.25 мм²) +	3	VW3 M8 101 R30	0.800
одним промышленным разъемом M23 (со стороны			(2 x 0.5 mm ²)]	5	VW3 M8 101 R50	1.200
серводвигателя) и одним 12-контактным гнездовым разъемом Molex (со стороны				10	VW3 M8 101 R100	2.250
преобразователя)				15	VW3 M8 101 R150	3.450
				20	VW3 M8 101 R200	4.350
				25	VW3 M8 101 R250	4.950
				50	VW3 M8 101 R500	13.300
				75	VW3 M8 101 R750	17.650

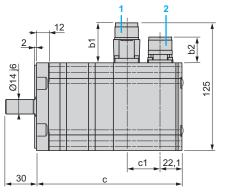

Принадлежности соединени	ия для создан	іия силовых шнуро	ов и шнуров уп	равлени	19		
Описание	Применяется	Применяется для		Ссылка Для кабеля поперечным сечением		№ по каталогу	Macca
				MN	l ²		КГ
Промышленный разъем М23 для создания силовых шнуров (продается в количестве по 5 шт.)	Серводвигател	Серводвигатели BRH ●●●●		1.5		VW3 M8 215	0.350
12-контактный гнездовой разъем Molex для создания шнуров управления (продается в количестве по 5 шт.)	Преобразовате (разъем CN2)	ель LXM 05 ••••••	2	-		VW3 M8 213	_
Промышленный разъем М23 для создания шнуров управления (продается в количестве по 5 шт.)	Серводвигател	Серводвигатели BRH ••••		3 -		VW3 M8 214	_
Описание	От серво- двигателя	К преобразо- вателю	Структура	Ссылка	Длина	№ по каталогу	Macca
					М		КГ
Кабели для создания силовых шнуров	BRH ••••	LXM 05•••••, Зависит от соче-	[(4 x 1.5 мм²) +	4	25	VW3 M5 301 R250	5.550
		таний, см. стр. 61841/2 - 61841/16	(2 x 1 мм ²)]		50	VW3 M5 301 R500	11.100
					100	VW3 M5 301 R1000	22.200
абели для создания шнуров правления для датчика положения	BRH ••••	LXM 05•••••	[5 x (2 x 0.25 mm²) +	5	25	VW3 M8 221 R250	5.250
SinCos Hiperface®			$(2 \times 0.5 \text{ MM}^2)]$		50	VW3 M8 221 R500	10.500
					100	18110 140 004 B4000	04.000
					100	VW3 M8 221 R1000	21.000

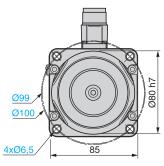

version: 1.2

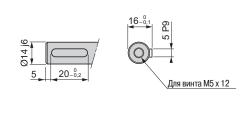

ВВН 057 (пример с прямыми разъемами: электропитания тормоза серводвигателя 1 и датчика положения 2)

Конец вала со шпонкой

(поставляется по отдельному заказу)

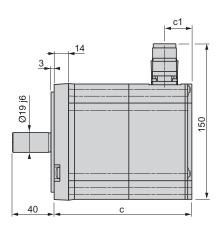


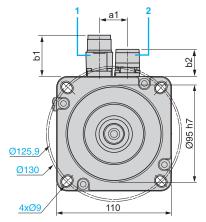


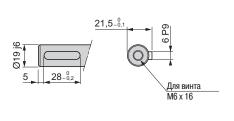

	Прямы	е разъемы	Угловы	е разъемы			
	b1	b2	b1	b2	с (без тормоза)	с (с тормозом)	
BRH 0571	39.4	22.3	39.4	39.4	124.6	124.6	
BRH 0572	39.4	22.3	39.4	39.4	143.1	143.1	
BRH 0573	39.4	22.3	39.4	39.4	161.6	161.6	
BRH 0574	39.4	22.3	39.4	39.4	180.1	180.1	

BRH 085 (пример с прямыми разъемами: электропитания тормоза серводвигателя 1 и датчика положения 2)

Конец вала со шпонкой (поставляется по отдельному заказу)






	Прямы	е разъемы	Угловы	е разъемы				
	b1	b2	b1	b2	с (без тормоза)	с (с тормозом)	с1 (без тормоза)	с1 (с тормозом)
BRH 0851	38.9	21.8	38.9	38.9	140.4	162.1	30	31
BRH 0852	38.9	21.8	38.9	38.9	170.4	192.1	30	31
BRH 0853	38.9	21.8	38.9	38.9	200.4	222.1	30	31
BRH 0854	38.9	21.8	38.9	38.9	230.4	252.1	30	31

Конец вала со шпонкой (поставляется по отдельному заказу)

				Прямые разъемы		ые разъемы				
	а1 (без тормоза)	а1 (с тормозом)	b1	b2	b1	b2	с (без тормоза)	с (с тормозом)	с1 (без тормоза)	с1 (с тормозом)
BRH 1101	31	30.5	38.9	21.8	38.9	38.9	132.1	198.1	25.6	28.6
BRH 1102	31	30.5	38.9	21.8	38.9	38.9	180.1	246.1	25.6	28.6
BRH 1103	31	30.5	38.9	21.8	38.9	38.9	228.1	294.1	25.6	28.6

Серводвигатели BRH

Опция: встроенный в сервомотор тормоз

Тормоз

Тормоз, встроенный в серводвигатель BRH, является электромагнитным тормозом с нажимной пружиной, который блокирует вал двигателя серводвигателя сразу же, как только выключен ток нагрузки электромагнита

В случае аварийной ситуации, такой как отключение электроэнергии или аварийной остановки, привод заторможен, таким образом значительно увеличивается безопасность.

Блокирование вала серводвигателя также необходимо в случаях перегрузки по вращающему моменту, например, в случае перемещения по вертикальной координате.

Тормоз срабатывает, используя контроллер тормоза (НВС) VW3 M3 103 (см. страницу 61066/3).

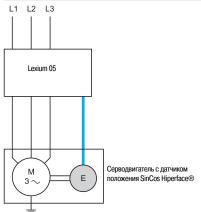
НВС - внешнее устройство. Это к тому же гарантирует электрическую развязку.

Характеристики				
Тип серводвигателяг	BRH	0571, 0572, 0573, 0574	0851, 0852, 0853, 0854	1101, 1102, 1103
Тормозной момент M _B ,	Н•м	2.2	8	15
Момент инерции ротора (только тормоз) J _{Br}	кг•см²	0.09	0.53	1.3
Электрическая мощность при фиксации Р _в ,	Вт	9	15	18
Номинальный ток	Α	0.375	0.625	0.75
Питающее напряжение	В	24 +10/-10%		
Время размыкания	мс	30	50	80
Время замыкания	мс	15	25	
Масса (которую необходимо добавить к массе серводвигателя без тормоза, см. страницу 61842/2)	кг	0.200	0.600	1.100

Каталожные номера

Серводвигатель BRH

Для выбора серводвигателя BRH с тормозом или без, см. каталожные номера на странице 61842/3.


Schneider

Серводвигатели BRH

Опция: датчик положения встроенный в серводвигатель

Датчик положения, встроенный в серводвигатель

Представление

Стандартное устройство измерения - SinCos Hiperface® однооборотный или многооборотный датчик положения встроен в серводвигатели BRH. Это устройство измерения отлично подходит к серии преобразователей Lexium 05.

Использование этого интерфейса позволяет:

- преобразователю автоматически распознавать данные с серводвигателя BRH;
- автоматически инициализировать контуры регулирования преобразователя, тем самым упрощая ввод в эксплуатацию устройств управления движением.

Характеристики				
Тип датчика положения		Однооборотный SinC	os	Многооборотный SinCos
Число периодов синусоиды за оборот		16	128	
Число дискрет (1)		16,384	131,072	131,072 х 4096 оборотов
Точность датчика положения	угл. мин	± 4.8	± 1.3	
М етод измерения		оптический с высоким ра	азрешением	
Интерфейс		Hiperface®		
Рабочая температура	°C	-5+110		

(1) Разрешение датчика положения, приведено для использования с преобразователем Lexium 05.

Каталожные номера

Серводвигатель BRH

Для выбора однооборотного или многооборотного датчика положения SinCos Hiperface®, встроенного в серводвигатель BRH, см. ссылки на странице 61842/3.

Серводвигатели BRH

Опция: планетарные редукторы GBX

Представление

Планетарный редуктор GBX

Во многих случаях управление движением требует применения планетарных редукторов для адаптации скоростей и вращающих моментов, наряду с продолжением обеспечения требований к точности от технических приложений.

Schneider Electric предпочел использовать редукторы GBX (изготовленные Neugart) с серией серводвигателей BRH. Этих редукторы смазаны на весь срок службы и разработаны для технических применений нечувствительных к механическим люфтам.

Является фактом, что их применение в комбинации с серводвигателями BRH было полностью проверено и то, что они легко монтируются, гарантируют простую, надежную работу.

Имеющиеся в наличии 5 типоразмеров (GBX 40 ... GBX 160), планетарных редукторов предлагаются с 15 передаточными отношениями (3:1 ... 100:1), см. приведенную ниже таблицу.

Непрерывные и пиковые вращающие моменты при нулевой скорости, возможные на выходе редуктора, получаются умножением характерных величин серводвигателя на передаточное отношение и клд редуктора (0.96, 0.94 или 0.9 в зависимости от передаточного отношения).

Приведенная ниже таблица показывает самые подходящие сочетания двигателя и редуктора. Что касается других сочетаний, обращайтесь к справочным данным серводвигателей.

Сочетания серводви	гателя BRH и	пелуктора G	BX					
Передаточные отношени		родуктори с						
Тип серводвигателя	Передаточно	е отношение						
	3:1	4:1	5:1	8:1	9:1	12:1	15:1	16:1
BRH 0571	GBX 40	GBX 40	GBX 40	GBX 40	GBX 40	GBX 40	GBX 40	GBX 40
BRH 0572	GBX 40	GBX 40	GBX 40	GBX 60	GBX 40	GBX 40	GBX 40	GBX 40
BRH 0573	GBX 40	GBX 40	GBX 40	GBX 60	GBX 40	GBX 40	GBX 60	GBX 60
BRH 0574	GBX 40	GBX 40	GBX 60					
BRH 0851	GBX 60	GBX 60	GBX 60	GBX 80	GBX 60	GBX 60	GBX 60	GBX 60
BRH 0852	GBX 60	GBX 60	GBX 60	GBX 80	GBX 60	GBX 60	GBX 80	GBX 80
BRH 0853	GBX 60	GBX 60	GBX 80	GBX 80	GBX 60	GBX 80	GBX 80	GBX 80
BRH 0854	GBX 60	GBX 60	GBX 80					
BRH 1101	GBX 80	GBX 80	GBX 80	GBX 120	GBX 80	GBX 80	GBX 80	GBX 80
BRH 1102	GBX 80	GBX 80	GBX 80	GBX 120	GBX 80	GBX 80	GBX 120	GBX 120
BRH 1103	GBX 80	GBX 80	GBX 80	GBX 120	GBX 80	GBX 80	GBX 120	GBX 120
Передаточные отношени	я от 20:1 до 100:	ı						
Тип серводвигателя	Передаточно	е отношение						
	20:1	25:1	32:1	40:1	60:1	80:1	100:1	
BRH 0571	GBX 40	GBX 40	GBX 60	GBX 60	GBX 60	(1)	(1)	
BRH 0572	GBX 40	GBX 60	GBX 60	(1)	(1)	(1)	(1)	
BRH 0573	GBX 60	GBX 60	GBX 60	(1)	(1)	(1)	(1)	
BRH 0574	GBX 60	(1)	(1)	(1)	(1)	(1)	(1)	
BRH 0851	GBX 60	GBX 80	GBX 80	GBX 80	GBX 120	GBX 120	GBX 120	
BRH 0852	GBX 80	GBX 80	GBX 80	GBX 120	GBX 120	GBX 120	GBX 120	
BRH 0853	GBX 80	GBX 80	GBX 120	GBX 120	GBX 120	-	-	
BRH 0854	GBX 80	GBX 120	GBX 120	GBX 120	GBX 120	_	-	
BRH 1101	GBX 80	GBX 120	GBX 120	GBX 160	GBX 120	-	-	
BRH 1102	GBX 120	GBX 120	GBX 120	GBX 160	-	-	-	
BRH 1103	GBX 120	GBX 160	GBX 120	GBX 160	-	_	-	

⁽¹⁾ Для этого сочетания, пожалуйста, консультируйтесь в своем региональном коммерческом представительстве.

GBX 60

Для этого сочетания Вы должны проверить, что в техническом приложении не будет превышаться максимальный вращающий момент на выходе редуктора (см. значения, приведенные на странице 61845/4).

Серводвигатели BRH

Опция: планетарные редукторы GBX

Тип редуктора			GBX 40	GBX 60	GBX 80	GBX 120	GBX 160	
Тип редуктора			Планетарный п	рямозубый редуктор)	·	·	
Люфт	3:1 8:1	угл.	< 24	< 16	< 9	< 8	< 6	
	9:1 40:1	мин.	< 28	< 20	< 14	< 12	< 10	
	60:1 100:1		< 30	< 22	< 16	< 14	-	
Упругость скручиванию	3:1 8:1	Н•м/	1	2.3	6	12	38	
	9:1 40:1	угл. мин.	1.1	2.5	6.5	13	41	
	60:1 100:1	NIJIII	1	2.5	6.3	12	-	
Уровень шума (1)		дБ (А)	55	58	60	65	70	
Корпус			Черный анодир	ованный алюминий				
Материал вала			C 45					
Степень защиты выхода вала от п	іыли и влажности		IP 54					
Смазка			На весь срок сл	ужбы				
Средний срок службы (2)			30,000					
Монтажное положение			Произвольное	положение				
Рабочая температура °C			-25+90					
пд	3:18:1		0.96					
	9:140:1		0.94					
	60:1100:1		0.9					
Максимальное допустимое	L _{10h} = 10,000 часов	Н	200	500	950	2000	6000	
радиальное усилие (2) (3)	L _{10h} = 30,000 часов	н	160	340	650	1500	4200	
Максимальное допустимое	L _{10h} = 10,000 часов	н	200	600	1200	2800	8000	
осевое усилие (2)	$L_{10h} = 30,000 \text{ часов}$	н	160	450	900	2100	6000	
Момент инерции редуктора	3:1	кг•см²	0.031	0.135	0.77	2.63	12.14	
	4:1	КГ•СМ²	0.022	0.093	0.52	1.79	7.78	
	5:1	KГ°CM²	0.019	0.078	0.45	1.53	6.07	
	8:1	КГ•СМ²	0.017	0.065	0.39	1.32	4.63	
	9:1	КГ•СМ²	0.03	0.131	0.74	2.62	-	
	12:1	KГ°CM ²	0.029	0.127	0.72	2.56	12.37	
	15:1	KГ°CM²	0.023	0.077	0.71	2.53	12.35	
	16:1	KГ°CM²	0.022	0.088	0.5	1.75	7.47	
	20:1	KГ°CM²	0.019	0.075	0.44	1.5	6.65	
	25:1	KГ°CM²	0.019	0.075	0.44	1.49	5.81	
	32:1	KГ°CM ²	0.017	0.064	0.39	1.3	6.36	
	40:1	KГ°CM²	0.016	0.064	0.39	1.3	5.28	
	60:1	KГ°CM²	0.029	0.076	0.51	2.57	-	
	80:1	KГ®CM ²	0.019	0.075	0.5	1.5	_	
	100:1	KГ°CM²	0.019	0.075	0.44	1.49		

version: 1.1

⁽¹⁾ Значение измеряется на расстоянии 1 м. без нагрузки при скорости серводвигателя 3000 об/мин и передаточном отношении 5:1.
(2) Значение дано для скорости на выходе вала 100 об/мин в режиме \$1 (циклический коэффициент = 1) для электрических машин при температуре окружающего воздуха 30°С.
(3) Сила приложена к середине выхода вала.

(продолжение)

Устройство управления перемещениями Lexium 05

Серводвигатели BRH

Опция: планетарные редукторы GBX

Тип редуктора			GBX 40	GBX 60	GBX 80	GBX 120	GBX 160
Продолжительный крутящий	3:1	Н•м	11	28	85	115	400
момент на выходе М _{2N} (1)	4:1	Н•м	15	38	115	155	450
	5:1	Н•м	14	40	110	195	450
	8:1	Н•м	6	18	50	120	450
	9:1	Н•м	16.5	44	130	210	-
	12:1	Н•м	20	44	120	260	800
	15:1	Н•м	18	44	110	230	700
	16:1	Н•м	20	44	120	260	800
	20:1	Н•м	20	44	120	260	800
	25:1	Н•м	18	40	110	230	700
	32:1	Н•м	20	44	120	260	800
	40:1	Н•м	18	40	110	230	700
	60:1	Н•м	20	44	110	260	-
	80:1	Н•м	20	44	120	260	-
	100:1	Н∙м	20	44	120	260	-
Лаксимальный крутящий	3:1	Н•м	17.6	45	136	184	640
иомент на выходе (1)	4:1	Н•м	24	61	184	248	720
	5:1	Н•м	22	64	176	312	720
	8:1	Н•м	10	29	80	192	720
	9:1	Н•м	26	70	208	336	
	12:1	Н•м	32	70	192	416	1280
	15:1	Н•м	29	70	176	368	1120
	16:1	Н•м	32	70	192	416	1280
	20:1	Н•м	32	70	192	416	1280
	25:1	Н•м	29	64	176	368	1120
	32:1	Н•м	32	70	192	416	1280
	40:1	Н•м	29	64	176	368	1120
	60:1	Н•м	32	70	176	416	
	80:1	Н•м	32	70	192	416	
	100:1	Н•м	32	70	192	416	-

⁽¹⁾ Значение дано для скорости на выходе вала 100 об/мин в режиме S1 (циклический коэффициент = 1) для электрических машин при температуре окружающего воздуха 30°C.

Серводвигатели BRH

Опция: планетарные редукторы GBX

Каталожные номера				
	Типоразмер	Передаточное отношение	№ по каталогу	Масса кг
	GBX 40	3:1, 4:1, 5:1 и 8:1	GBX 040••• ••• •G	0.350
		9:1, 12:1, 15:1, 16:1, 20:1 и 25:1	GBX 040●●● ●●● ●G	0.450
	GBX 60	3:1, 4:1, 5:1 и 8:1	GBX 060••• ••• •G	0.900
6		9:1, 12:1, 15:1, 16:1, 20:1, 25:1, 32:1 и 40:1	GBX 060••• ••• •G	1.100
		60:1	GBX 060••• ••• •G	1.300
GBX●●●	GBX 80	3:1, 4:1, 5:1 и 8:1	GBX 080●●● ●● ●G	2.100
		9:1, 12:1, 15:1, 16:1, 20:1, 25:1, 32:1 и 40:1	GBX 080••• ••• •G	2.600
		60:1, 80:1 и 100:1	GBX 080••• ••• •G (1)	3.100
	GBX 120	8:1	GBX 120●●● ●●● ●G	6.000
		15:1, 16:1, 20:1, 25:1, 32:1 и 40:1	GBX 120 • • • • • G	8.000
		60:1, 80:1 и 100:1	GBX 120●●● ●●● ●G	10.000
	GBX 160	25:1 и 40:1	GBX 160••• ••• •G	22.000

			GBX	•••	•••	•••	•	G
' ипоразмер	Диаметр корпуса	40 мм		040				
	(см. табл. сочетаний	60 мм		060				
	с серводвигателями BRH на стр. 61845 RU/2)	80 мм		080				
		120 мм		120				
		160 мм		160				
Іередаточное отношение		3:1			003			
		4:1			004			
		5:1			005			
		8:1			008			
		9:1			009			
		12:1			012			
		15:1			015			
		16:1			016			
		20:1			020			
		25:1			025			
		32:1			032			
		40:1			040			
		60:1			060			
		80:1			080			
		100:1			100			
одсоединенный	Тип	BRH 057				057		
ерводвигатель BRH		BRH 085				085		
		BRH 110				110		
	Модель	BRH ●●●1					1	
		BRH ●●●2					2	
		BRH ●●●3					3	
		BRH ●●●4					4	
амонастройка серводвигател	ıя BRH							G

⁽¹⁾ Для комбинаций редуктора **GBX 080** и серводвигателя **BRH 057●**, пожалуйста, консультируйтесь со своим региональным коммерческим представительством.

160 025, 040

Устройство управления перемещениями Lexium 05

Серводвигатели BRH

Опция: планетарные редукторы GBX

Размеры Монтаж серводвигателя a (1) a1(1) a2 а3 a4 4xØ6 (1) 4xØ4 a5 Ø5 Ø7 (1) d 8 8 ğ ☑ c (1) GBX a2 аЗ а4 а5 Ø1 Ø2 Ø3 Ø5 040 003...008 39 26 23 2,5 11.2 3 40 26 h7 10 h7 M4 x 6 34 040 009...025 23 2.5 11.2 3 40 26 h7 10 h7 34 52 26 060 003...008 47 35 30 2.5 16 5 60 40 h7 14 h7 M5 x 8 52 060 009...040 59.5 35 30 2.5 16 5 60 40 h7 14 h7 M5 x 8 52 060 060 72 35 30 2.5 16 5 60 40 h7 14 h7 M5 x 8 52 080 003...008 36 60.5 40 4 22.5 6 80 60 h7 20 h7 $M6 \times 10$ 70 080 009...040 36 4 22.5 60 h7 20 h7 M6 x 10 70 77.5 40 6 80 080 060...100 95 40 36 4 22.5 6 80 60 h7 20 h7 M6 x 10 70 120 008 74 55 50 5 28 8 115 80 h7 25 h7 M10 x 16 100 120 015...040 101 55 50 5 28 8 115 80 h7 25 h7 M10 x 16 100 120 060...100 128 55 50 5 28 8 115 80 h7 25 h7 M10 x 16 100

(1) Размеры а, а1, ☑с, ∅6 и ∅7 зависят от сочетания планетарного редуктора и серводвигателя /ВRH:

153.5

87

80

Сочетания		Передаточное	отношение					
Редуктор	Серводвигатель	от 3:1 до 8:1	от 9:1 до 40:1	от 60:1 до 100:1	от 3:1 до 100:1			
		a	а	а	a1	⊠c	Ø6	Ø7
GBX 040	BRH 057●	89.5	102.5	-	24.5	60	M5	66.7
GBX 060	BRH 057●	106	118.5	131.5	24.5	60	M5	66.7
GBX 060	BRH 085●	113	125.5	138.5	31.5	90	M6	100
GBX 080 (2)	BRH 057● (2)	-	151	168.5	33.5	80	M5	66.7
GBX 080	BRH 085●	133.5	151	168.5	33.5	90	M6	100
GBX 080	BRH 110●	143.5	161	178.5	43.5	115	M8	130
GBX 120	BRH 085●	_	203.5	231	47.5	115	M6	100
GBX 120	BRH 110●	176.5	203.5	231	47.5	115	M8	130
GBX 160	BRH 110●	_	305	_	64.5	140	M8	130

8

43

12

160

130 h7

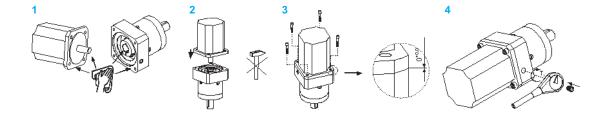
40 h7

M12 x 20

145

(2) Для этого сочетания, пожалуйста, консультируйтесь в своем региональном коммерческом представительстве.

Серводвигатели BRH


Опция: планетарные редукторы GBX

Монтаж

Для установки планетарного редуктора GBX на серводвигатель BRH не требуется никакого специального инструмента. Необходимо соблюдать обычные правила для механического монтажа:

- 1 чистить опорные поверхности и уплотнения
- 2 центровать соединяемые валы и выполняют сборку в вертикальном положении
- 3 равномерно распределять силу сцепления фланца серводвигателя к фланцу редуктора во время затягивания винтов с крестовым шлицем
- 4 корректировать вращающий момент затягивания кольца ТА, используя динамометрический ключ (2... 40 Н•м в зависимости от модели редуктора)

За дополнительной информацией, обращайтесь $\,\kappa\,$ инструкции, поставляемой $\,c\,$ изделиями.

Серводвигатели BSH

Серводвигатель BSH с прямыми разъемами

Серводвигатель BSH с вращающимися угловыми разъемами

Скорость в об./мин

Каталожные номера:

стр. 61852/2

Вращающий момент в Н•м М_{тах} 1 Момент в Н•м Момент в Н•м

Рабочая зона

Характеристики:

стр. 61851/2

Представление

Серводвигатели BSH представляют превосходное решение, отвечающее требованиям по быстроходности и точности регулирования скорости. Пять типоразмеров фланцев и номенклатура длин, позволяют найти отличное решение для большинства приложений, перекрывая непрерывный диапазон заданных крутящих моментов от 0.5 до 34.4 Нм и скоростей до 8000 об./мин.

Благодаря новой технологии обмоток, основывающейся на явновыраженных полюсах, серводвигатели BSH еще более компактны и представляют более высокую удельную мощность, чем обычные серводвигатели.

Серводвигатели ВSH доступны в пяти типоразмерах фланцев: 55, 70, 100, 140 и 205 мм. Тепловая защита обеспечивается температурным датчиком, встроенным в серводвигатели. Они сертифицированы лабораторией по технике безопасности отметкой «Признано» № и соответствуют стандартам UL 1004, так же, как и европейским директивам (маркировка С €). Имеются в наличии серводвигатели ВSH следующих разновидностей:

- со степенью защиты IP 50 или IP 55;
- с тормозом или без:
- с прямыми или угловыми разъемами;
- с одно или многооборотным синусно-косинусным датчиком положения;
- с гладким концом вала или со шпонкой.

Характеристики вращающий момент/скорость

Серводвигатели BSH обеспечивают параметры кривой вращающий момент/скорость аналогичные примеру, показанному слева:

- 1 Пиковый вращающий момент, в зависимости от модели серводвигателя
- 2 Продолжительный вращающий момент, зависящий от модели серводвигателя, где:
- п_{мах} (в об./мин) соответствует максимальной скорости серводвигателя
- М (в Н•м) представляет пиковый заданный вращающий момент
- М_о (в Н•м) представляет продолжительный заданный вращающий момент

Правило для определения типоразмера серводвигателя в соответствии с приложением

Кривые вращающий момент/скорость могут использоваться для определения надлежащего типоразмера серводвигателя.

- 1 Определяют рабочую зону работы приложения в единицах скорости.
- 2 Проверяют, используя временную диаграмму цикла серводвигателя, что вращающие моменты, требуемые практическим приложением на протяжении различных фаз цикла локализуются в пределах области, ограниченной кривой 1 рабочей зоны.
- **3** Вычисляют среднюю скорость n_{avg} и эквивалентный по теплу вращающий момент M_{ac} (см. страницу 61856/2).
- 4 Точка, определяемая п м м должна быть расположена ниже кривой 2 в рабочей зоне. Примечание: Для определения типоразмера серводвигателя, см. страницу 61856/2.

Функции

Основные функции

Серводвигатели BSH были разработаны с учетом следующих требований:

- Функциональные характеристики, прочность, безопасность, и т.д. соответствуют IEC/EN 60034-1.
- Рабочая температура окружающего воздуха:
- $\hfill \Box \$ 20...40°C согласно DIN 50019R14;
- \square максимум 55°C с уменьшением от 40°C номинальной выходной мощности на 1% от номинала на каждый дополнительный °C.
- Относительная влажность: IEC 60721-3-3 категория 3К4.
- **■** максимальная рабочая высота над уровнем моря: 1000 м без уменьшения номинальных значений, 2000 м с k = 0.86, 3000 м. с k = 0.8 (1).
- Температура хранения и транспортировки: 25... 70°C.
- Класс изоляции обмоток: F (максимальная температура для обмоток 155°C) согласно DIN VDE 0530.
- Подключение силового питания и датчика положения через прямые или угловые разъемы.
- Тепловая защита встроенным термисторным датчиком РТС, контролируемым преобразователем Lexium 05.
- Допуски на отклонение от окружности, соосность и перпендикулярность между фланцем и валом, соответствует DIN 42955, класс N.
- Разрешенные монтажные положения: нет монтажных ограничений для IMB5 IMV1 и IMV3, согласно DIN 42950.
- краска на основе полиэфирной смолы: непрозрачная черная краска RAL 9005.

(1) k: фактор уменьшения номинальных значений.

стр. 61853/2

Серводвигатели BSH

Функции (продолжение)

Основные функции (продолжение)

- Степень защиты:
- □ корпус: ІР 65 в соответствии с ІЕС/ЕN 60529;
- □ концевая часть вала: IP50 (1) или IP 65 в соответствии с IEC/EN 60529.
- Встроенный датчик: SinCos Hiperface® однооборотный или многооборотный датчик положения с высокой разрешающей способностью.
- Конец вала гладкий или со шпонкой.

Тормоз

Серводвигатели BSH могут быть оборудованы надежным электромагнитным тормозом.

⚠ Не используйте тормоз как активный тормоз для торможения, так как это быстро повредит его.

Встроенный датчик положения

Серводвигатели BSH могут быть оборудованы SinCos Hiperface® однооборотным датчиком положения с высокой разрешающей способностью (131 072 делений/оборот) (2), или многооборотным (131 072 делений/оборот x 4096 оборотов) (2), обеспечивающим угловую точность положения вала определенно меньшей, чем ± 1.3 угловых минуты.

Этот датчик положения выполняет следующие функции:

- передает угловое положение ротора так, что технологические процессы могут быть синхронизированы;
- измеряет скорость серводвигателя посредством подключенного преобразователя Lexium 05. Эта информация используется регулятором скорости преобразователя.
- измеряет информацию о положении для регулятора положения преобразователя;
- измеряет и передает информацию о положении в инкрементном формате в цепь обратной связи по положению блока управления перемещением (ESIM (Encoder SIMulation имитация энкодера) выход с интерфейсом RS 422).

Описание

Серводвигатели BSH с 3-фазным статором и 6 - 10-полюсным ротором (в зависимости от модели) с магнитами из сплава неодим-железо-бор (NdFeB), состоят из:

- 1 корпуса, защищенного непрозрачной черной краской RAL 9005
- 2 осевого фланца с 4 точками крепления
- з конца вала, гладкого или со шпонкой (в зависимости от модели)
- 4 резъбового пыле и влагозащищенного штыревого прямого разъема для подключения силового кабеля (3)
- 5 резьбового пыле и влагозащищенного штыревого прямого разъема для подключения управляющего кабеля (датчик положения) (3)

Разъемы, заказываемые отдельно, для соединения с преобразователем Lexium 05, см. страницу 61852/4.

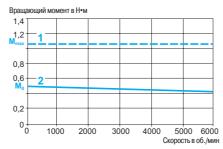
Фирма Schneider Electric уделила особое внимание обеспечению совместимости между серводвигателями BSH и преобразователями Lexium 05. Эта совместимость гарантируется только при использовании кабелей и разъемов, поставляемых фирмой Schneider Electric, см. страницу 61852-EN/4.

- IP 50 при монтаже в положении IMV3 (вертикальная установка с концом вала наверху); IP 54 при монтаже в положении IMV1 (вертикальная установка с концом вала внизу), или в положении IMB5 (горизонтальный монтаж).
 Разрешение датчика положения задано для использования с преобразователем Lexium 05.
- (3) Другая модель с вращающимся угловым разъемом.

Schneider

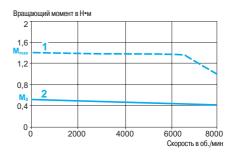
Серводвигатели BRH

Тип серводвига	теля		BSH 0551T						
Присоединенны	ий преобразователь Lexium 05		LXM 05 ●D10F1	LXM 05 CU70M2	LXM 05 ●D10M2	LXM 05 ●D10M3X			
Сетевое питающ	ее напряжение	В	115, однофазный	230, однофазный		230, трехфазный			
Частота коммута	ции	кГц	8						
Вращающий	Длительный при остановке $_0$	Н•м	0.5						
момент	Пиковый при остановке М _{мах}	Н•м	1.4	1.08	1.4				
Номинальная	Номинальный момент	Н•м	0.46		0.43				
рабочая точка	Номинальная скорость	об./мин	3000		6000				
	Выходная мощность серводвигателя	Вт	150		270				
Максимальный т	ок	A _{ср. кв.}	5.4						
Характеристики	ı серводвигателей								
Максимальная м	еханическая скорость	об./мин	9000						
Постоянные	Вращающий момент	Н•м/А ср. кв.	0.36						
при 120°C)	Коэффициент противо-ЭДС	В _{ср. кв.} / об./мин	22						
Ротор	Числор полюсов		6						
	Момент Без тормоза J _m инерции	КГ°СМ ²	0.059						
	С тормозом Ј	кг•см²	0.0803						
Статор	Сопротивление (фаза/фаза)	Ом	12.2						
при 20°C)	Индуктивность (фаза/фаза)	мГн	20.8						
	Электромагнитная постоянная времени	мс	1.7						
Гормоз (в зависим	иости от модели)		См. стр. 61854/2						

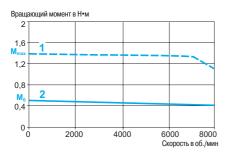

Серводвигатель BRH 0571P

С преобразователем LXM 05•D10F1 115 В, однофазный

Вращающий момент в H+м 2 1,6 M_{max} 1,2 0,8 0,4 0 0 1000 2000 3000 4000 5000 6000 Скорость в об./мин


С преобразователем LXM 05CU70M2

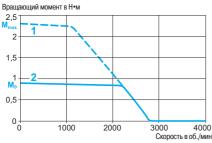
230 В, однофазный


С преобразователем LXM 05●D10M2

230 В, однофазный

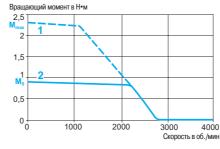
С преобразователем LXM 05●D10M3X

230 В, трехфазный

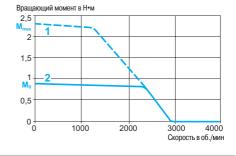


- Пиковый момент вращения
- 2 Продолжительный момент вращения

Тип серводвигателя Присоединенный преобразователь Lexium 05			BSH 0552M		
			LXM 05 CU70M2	LXM 05 ●D10M2	LXM 05 •D10M3X
Сетевое питающее напряжение			230, однофазный		230, трехфазный
Частота коммутации		кГц	4		
Вращающий момент	Длительный при остановке М	0 Н•м	0.9		
	Пиковый при остановке М	мах Н•м	2.3		
Номинальная рабочая точка	Номинальный момент	Н•м	0.85		
	Номинальная скорость	об./мин	1500		
	Выходная мощность серводвигате	ля Вт	130		
Максимальный ток		А _{ср. кв.}	2.6		
Характеристик	и серводвигателей				
Максимальная к	механическая скорость	об./мин	9000		
Постоянные (при 120°C)	Вращающий момент	Н•м/А _{ср. кв.}	1.33		
	Коэффициент противо-ЭДС	В _{ср. кв.} / об./мин	74		
Ротор	Числор полюсов		6		
	Момент Без тормоза J , инерции	кг•см²	0.096		
	С тормозом 🜙	кг•см²	0.1173		
Статор (при 20°C)	Сопротивление (фаза/фаза)	Ом	60.2		
	Индуктивность (фаза/фаза)	мГн	122		
	Электромагнитная постоянная вре	мени мс	2.03		
Тормоз (в зависимости от модели)			См. стр. 61854/2		


Серводвигатель BSH 0552M

С преобразователем LXM 05CU70M2 230 В, однофазный

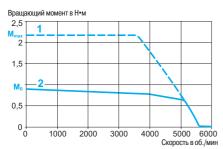

С преобразователем LXM 05●D10M2

230 В, однофазный

С преобразователем LXM 05●D10M3X

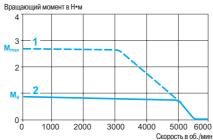
230 В, трехфазный

- Пиковый момент вращения
- Продолжительный момент вращения

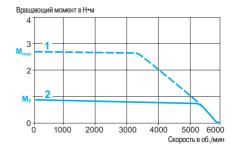

Серводвигатели BRH

Тип серводвига	ателя		BSH 0552P						
Присоединенн	ый преобразователь Lexium 05		LXM 05 CU70M2	LXM 05 ●D10M2	LXM 05 ●D10M3X	LXM 05 ●D14N4			
Сетевое питаюц	цее напряжение	В	230, однофазный 230, трехфазный 400/480, трехфазн						
Тастота коммут	ации	кГц	8						
Вращающий	Длительный при остановке M ₀	Н•м	0.9	0.9					
иомент	Пиковый при остановке M _{мах}	Н•м	2.17						
Номинальная	Номинальный момент	Н•м	0.81						
рабочая точка	Номинальная скорость	об./мин	3000						
	Выходная мощность серводвигателя	Вт	250						
Максимальный	ток	A _{ср. кв.}	4.8						
Характеристик	и серводвигателей								
Лаксимальная механическая скорость об./ми			9000						
Іостоянные	Вращающий момент	H•м/A _{ср. кв.}	0.7						
при 120°C)	Коэффициент противо-ЭДС	В _{ср. кв.} / об./мин	40						
Ротор	Числор полюсов		6						
	Момент Без тормоза J _m инерции	кг•см²	0.096						
	С тормозом J _m	кг•см²	0.1173						
татор	Сопротивление (фаза/фаза)	Ом	17.4						
при 20°C)	Индуктивность (фаза/фаза)	мГн	35.3						
	Электромагнитная постоянная времен	мс	2.03						
ормоз (в зависи	мости от модели)		См. стр. 61854/2						

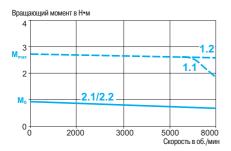
Серводвигатель BSH 0552P


С преобразователем LXM 05CU70M2

230 В, однофазный


С преобразователем LXM 05●D10M2

230 В, однофазный


С преобразователем LXM 05●D10M3X

230 В, трехфазный

С преобразователем LXM 05●D14N4

400/480 В, трехфазный

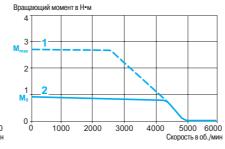
- Пиковый момент вращения Продолжительный момент вращения
- 1.1 Пиковый момент вращения при 400 В, трехфазный 2.1 Продолжительный момент вращения при 400 В,
- трехфазный
- 1.2 Пиковый момент вращения при 480 В, трехфазный 2.2 Продолжительный момент вращения при 480 В,
- трехфазный

Представление: Каталожные номера: стр. 61850/2 стр. 61852/2

стр. 61853/2

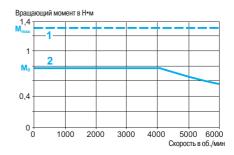
Серводвигатели BRH

Тип серводвига	теля				BSH 0552T				
Присоединенны	ый преобразов	атель Lexium 0	5		LXM 05 ●D10F1	LXM 05 ●D17F1	LXM 05 CU70M2	LXM 05 ●D10M2	LXM 05 ●D10M3X
Сетевое питающ	ее напряжени	•		В	115, однофазный 230, однофазный 230, трехі				
Настота коммута	щии			кГц	8				
Вращающий	Длительный г	іри остановке	M _o	Н•м	0.9		0.77	0.9	
момент	Пиковый при	остановке	M _{мах}	Н•м	1.77	2.7	1.31	1.77	
Номинальная	Номинальный	і момент		Н•м	0.8		0.77	0.71	
рабочая точка	Номинальная скорость			об./мин	3000			6000	
	Выходная мог	цность серводви	гателя	Вт	250		240	450	
Максимальный ток			А _{ср. кв.}	8.8					
Характеристик	и серводвигате	лей							
Максимальная м				об./мин	9000				
Постоянные	Вращающий момент		H•м/A _{ср. кв.}	0.36					
при 120°C)	Коэффициент	противо-ЭДС		В _{ср. кв.} / об./мин	22				
Ротор	Числор полю	ОВ			6				
	Момент инерции	Без тормоза	J _m	KГ°CM ²	0.096				
		С тормозом	J _m	КГ•СМ ²	0.1173				
Статор	Сопротивлен	ие (фаза/фаза)		Ом	5.2				
при 20°C)	Индуктивност	ъ (фаза/фаза)		мГн	10.6				
	Электромагнитная постоянная времени			мс	2.04				
Гормоз (в зависим	иости от модели)				См. стр. 61854/2				

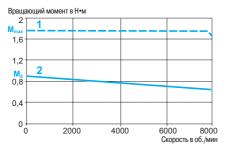

Серводвигатель BSH 0552T

С преобразователем LXM 05●D10F1 115 В, однофазный

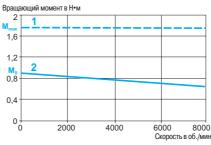
Вращающий момент в Н•м 1,6 1,2 0,8 0,4 1000 2000 3000 4000 5000 6000 Скорость в об./мин


С преобразователем LXM 05●D17F1

115 В, однофазный



С преобразователем LXM 05CU70M2


230 В, однофазный

С преобразователем LXM 05●D10M2 230 В, однофазный

С преобразователем LXM 05●D10M3X 230 В, трехфазный

- Пиковый момент вращения
- Продолжительный момент вращения

Представление: стр. 61850/2

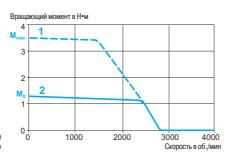
Каталожные номера:

стр. 61852/2

стр. 61853/2

Устройство управления перемещениями Lexium 05 Серводвигатели BRH

Тип серводвига	ателя		BSH 0553M				
Присоединенны	ый преобразователь Lexium 05		LXM 05 ●D10M2	LXM 05 ●D10M3X			
Сетевое питающ	цее напряжение	В	230, однофазный 230, трехфазный				
Настота коммута	ации	кГц	4				
Вращающий	Длительный при остановке $_0$	Н•м	1.3				
иомент	Пиковый при остановке М _{мах}	Н•м	3.5				
Іоминальная	Номинальный момент	Н•м	1.2				
рабочая точка	Номинальная скорость	об./мин	1500				
	Выходная мощность серводвигателя	Вт	190				
Максимальный ток A _{ср. к}			3.4				
Характеристик	и серводвигателей						
Максимальная м	иеханическая скорость	об./мин	9000				
остоянные	Вращающий момент	Н•м/А ср. кв.	1.33				
при 120°C)	Коэффициент противо-ЭДС	В _{ср. кв.} / об./мин	79				
Ротор	Числор полюсов		6				
	Момент Без тормоза J _m инерции	кг•см²	0.134				
	С тормозом Ј	кг•см²	0.1553				
татор	Сопротивление (фаза/фаза)	Ом	38.4				
три 20°C)	Индуктивность (фаза/фаза)	мГн	92.2				
	Электромагнитная постоянная времени	мс	2.4				
ормоз (в зависи	мости от модели)		См. стр. 61854/2				


Серводвигатель BSH 0553M

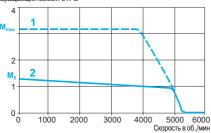
С преобразователем LXM 05●D10M2

230 В, однофазный

Вращающий момент в Н•м 2 0 1000 2000 3000 4000 Скорость в об./мин

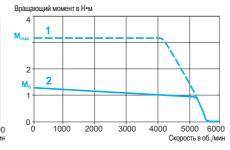
С преобразователем LXM 05●D10M3X 230 В, трехфазный

- Пиковый момент вращения Продолжительный момент вращения

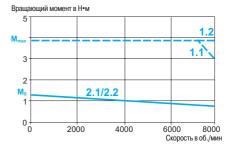

Серводвигатели BRH

Тип серводвига	теля			BSH 0553P			BSH 0553T			
Присоединенны	й преобразователь Lexium 05			LXM 05 ●D10M2	LXM 05 ●D10M3X	LXM 05 ●D14N4	LXM 05 ●D17F1	LXM 05 ●D17M2	LXM 05 ●D17M3X	
Сетевое питающ	ее напряжение		В	230, однофазный	230, трехфазный	400/480, трехфазный	115, однофазный	230, однофазный	230, трехфазны	
Частота коммута	ции	1	кГц	8						
Вращающий Длительный при остановке М _о Н•м			Н•м	1.3						
момент	Пиковый при остановке	M _{max}	Н•м	3.18 3.87			3.31			
Номинальная	Номинальный момент		Н•м	1.1						
рабочая точка	поминальная скорость			3000						
			Вт	350						
Максимальный ток			А _{ср. кв.}	6.5			11.9			
Характеристики	серводвигателей									
Лаксимальная механическая скорость			об./мин	9000						
Постоянные (при 120°C) Вращающий момент Коэффициент противо-ЭДС		1	H•м/A _{ср. кв.}	0.7			0.39			
		1	В _{ср. кв.} / об./мин	41			22			
Ротор	Числор полюсов			6						
	Момент Без тормоза инерции	J _m	KГ°CM ²	0.134						
	С тормозом	J _m	КГ•СМ²	0.1553						
Статор	Сопротивление (фаза/фаза)	(Ом	10.4			3.1			
(при 20°C)	Индуктивность (фаза/фаза)	1	мГн	25			7.4			
Электромагнитная постоянная времени			мс	2.4		2.39				
Гормоз (в зависим	ости от модели)			См. стр. 61854/2						
Характеристи	ки вращающий момент/ск	орость								
Серводвигатель	BSH 0553P									

С преобразователем LXM 05●D10M2

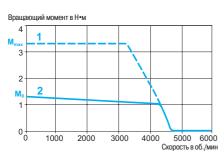

230 В, однофазный

Вращающий момент в Н•м

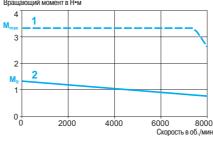


С преобразователем LXM 05●D10M3X

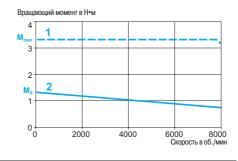
230 В, трехфазный


С преобразователем LXM 05●D14N4 400/480 В, трехфазный

Серводвигатель BSH 0553T


С преобразователем LXM 05●D17F1

115 В. однофазный


С преобразователем LXM 05●D17M2

230 В, однофазный

С преобразователем LXM 05●D17M3X

230 В, трехфазный

- Пиковый момент вращения
- Продолжительный момент вращения
- 1.1 Пиковый момент вращения при 400 В, трехфазный
- 2.1 Продолжительный момент вращения при 400 В, трехфазный
- 1.2 Пиковый момент вращения при 480 В, трехфазный
- 2.2 Продолжительный момент вращения при 480 В, трехфазный

Представление: стр. 61850/2

Каталожные номера: стр. 61852/2

стр. 61853/2

Устройство управления перемещениями Lexium 05 Серводвигатели BRH

Тип серводвига	теля		BSH 0701 M	BSH 0701P		
Присоединеннь	ий преобразователь Lexium 05		LXM 05 •D10M3X	LXM 05 ●D10M2	LXM 05 ●D10M3X	
етевое питающ	ее напряжение	В	230, трехфазный	230, однофазный	230, трехфазный	
астота коммута	ции	кГц	4			
ращающий	Длительный при остановке M ₀	Н•м	1.4			
омент	Пиковый при остановке М _{мах}	Н•м	2.66			
оминальная	Номинальный момент	Н•м	1.36	1.3		
абочая точка	Номинальная скорость	об./мин	1500	3000		
	Выходная мощность серводвигателя	Вт	210	400		
Іаксимальный т	ОК	А _{ср. кв.}	3.1	5.7		
Характеристики	1 серводвигателей					
	еханическая скорость	об./мин	8000			
Постоянные Вращающий момент		H∙м/A _{ср. кв.}	1.4	0.8		
при 120°C)	Коэффициент противо-ЭДС	В _{ср. кв.} / об./мин	85	46		
отор	Числор полюсов		6			
	Момент Без тормоза J _m инерции	КГ•СМ ²	0.25			
	С тормозом J _m	кг•см²	0.322			
татор	Сопротивление (фаза/фаза)	Ом	35.4	10.4		
іри 20°С)	Индуктивность (фаза/фаза)	мГн	131.9	38.8		
	Электромагнитная постоянная времени	мс	3.73	3.73		
ормоз (в зависим	иости от модели)		См. стр. 61854/2			
Характеристи	ки вращающий момент/скорость					
Серводвигатель	ь BSH 0701M	Серводвига	тель BSH 0701P			
преобразовате 30 В, трехфазный	елем LXM 05•D10M3X	С преобразо 230 В, однофа	вателем LXM 05●D10M2 3ный	С преобразо 230 В, трехфаз	вателем LXM 05●D10M3X вный	
ращающий момент в	Н•м	Вращающий мом	иент в Н•м	Вращающий мом	иент в Н•м	
I _{max} _ 1	-	M _{max} 1		M _{max} 1 _ 1		
2		2		2		
M ₀ 2		M ₀ 2		M ₀ 2		
1		1		M ₀		
1		'				

- Пиковый момент вращения Продолжительный момент вращения

1000

2000

3000 4000 Скорость в об./мин

1000

2000

3000

4000 5000 6000 Скорость в об./мин

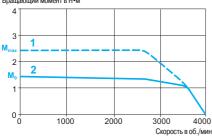
1000

2000

3000

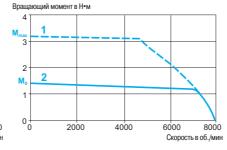
4000

5000 6000 Скорость в об./мин

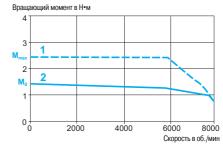

Серводвигатели BRH

Тип серводвига	ателя		BSH 0701T					
Присоединенні	ый преобразователь Lexium 05		LXM 05 ●D10F1	LXM 05 ●D17M2	LXM 05 ●D10M3X	LXM 05 ●D17M3X		
етевое питаюц	цее напряжение	В	115, однофазный	230, однофазный	230, трехфазный	·		
Настота коммута	ации	кГц	8		,			
Вращающий	Длительный при остановке M ₀	Н•м	1.4					
иомент	Пиковый при остановке M _{мах}	Н•м	2.42	3.19	2.42	3.19		
Номинальная	Номинальный момент	Н•м	1.2 1.3					
рабочая точка	Номинальная скорость	об./мин	3000					
	Выходная мощность серводвигателя	Вт	380	400				
Л аксимальный [.]	ток	A _{ср. кв.}	10.1					
Характеристик	и серводвигателей							
Максимальная м	механическая скорость	об./мин	8000					
Постоянные	Вращающий момент	Н•м/А _{ср. кв.}	0.44					
100°O\	Коэффициент противо-ЭДС	В _{ср. кв.} / об./мин	26					
Ротор	Числор полюсов		6					
	Момент Без тормоза J _м инерции	KГ°CM ²	0.25					
	С тормозом Ј	KГ°CM ²	0.322					
Статор	Сопротивление (фаза/фаза)	Ом	3.3					
(при 20°C)	Индуктивность (фаза/фаза)	мГн	12.3					
	Электромагнитная постоянная времени		3.73					
Гормоз (в зависи	мости от модели)		См. стр. 61854/2					

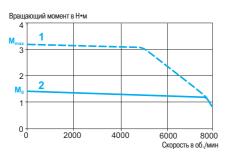
Серводвигатель BSH 0701T


С преобразователем LXM 05●D10F1 115 В, однофазный

Вращающий момент в Н•м


С преобразователем LXM 05●D17M2

230 В, однофазный


С преобразователем LXM 05●D10M3X

230 В, трехфазный

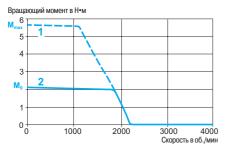
С преобразователем LXM 05●D17M3X

230 В, трехфазный

- Пиковый момент вращения
- Продолжительный момент вращения

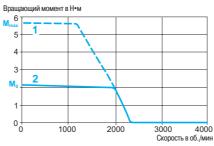
Представление: стр. 61850/2

Каталожные номера: стр. 61852/2


Устройство управления перемещениями Lexium 05 Серводвигатели BRH

Тип серводвига	теля		BSH 0702M				
Присоединенны	ый преобразователь Lexium 05		LXM 05 •D10M2	LXM 05 •D10M3X			
Сетевое питающ	цее напряжение	В	230, однофазный	230, трехфазный			
łастота коммута	ации	кГц	4				
Вращающий	• • • •		2.12				
иомент	Пиковый при остановке М _{мах}	Н•м	5.63				
Іоминальная	Номинальный момент	Н•м	2				
абочая точка	Номинальная скорость	об./мин	1500				
	Выходная мощность серводвигателя	Вт	300				
Максимальный 1	ток	А _{ср. кв.}	6				
Характеристик	и серводвигателей						
Паксимальная механическая скорость об./мин			8000				
Іостоянные при 120°C)	Вращающий момент	H•м/A _{ср. кв.}	1.47				
	Коэффициент противо-ЭДС	В _{ср. кв.} / об./мин	95				
Ротор	Числор полюсов		6				
	Момент Без тормоза J _m инерции	кг•см ²	0.41				
	С тормозом J _m	KГ°CM ²	0.482				
татор	Сопротивление (фаза/фаза)	Ом	16.4				
три 20°C)	Индуктивность (фаза/фаза)	мГн	74.1				
	Электромагнитная постоянная времены	мс	4.52				
ормоз (в зависи	мости от модели)		См. стр. 61854/2				

Серводвигатель BSH 0702M


С преобразователем LXM 05●D10M2

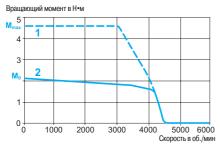
230 В, однофазный

С преобразователем LXM 05●D10M3X

230 В, трехфазный

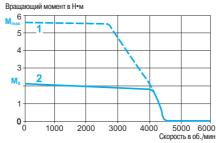
- Пиковый момент вращения Продолжительный момент вращения

Серводвигатели BRH

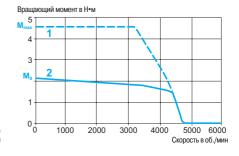

Тип серводвига	теля				BSH 0702P					
Присоединенны	ій преобразова	тель Lexium 05	j		LXM 05 ●D10M2	LXM 05 ●D17M2	LXM 05 ●D10M3X	LXM 05 ●D17M3X	LXM 05 ●D14N4	
Сетевое питаюш	ее напряжение			В	230, однофазный 230, трехфазный 400/480, трехф					
Частота коммутации ।			кГц	4						
Вращающий <u>Д</u> лительный при остановке <mark>М</mark> о		M _o	Н•м	2.12						
момент	Пиковый при с	остановке	M _{max}	Н•м	4.57	5.63	4.57	5.63		
Номинальная	Номинальный	момент		Н•м	1.9					
рабочая точка	Номинальная	скорость		об./мин	3000					
	Выходная моц	цность серводвиг	ателя	Вт	600					
Максимальный т	Іаксимальный ток			А _{ср. кв.}	11.8					
Характеристик	і серводвигател	пей								
Максимальная механическая скорость об./и			об./мин	8000						
Постоянные	Вращающий момент			Н•м/А _{ср. кв.}	0.77					
(при 120°C)	Коэффициент	противо-ЭДС		В _{ср. кв.} / об./мин	48					
Ротор	Числор полюс	OB			6					
	Момент инерции	Без тормоза	J _m	кг•см²	0.41					
		С тормозом	J _m	кг•см²	0.482					
Статор	Сопротивлени	е (фаза/фаза)		Ом	4.2					
(при 20°C)	Индуктивность (фаза/фаза)		мГн	19						
	Электромагни	тная постоянная	времени	мс	4.52					
Тормоз (в зависи	иости от модели)				См. стр. 61854/2					

Характеристики вращающий момент/скорость

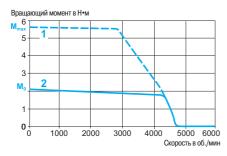
Серводвигатель BSH 0702P


С преобразователем LXM 05●D10M2

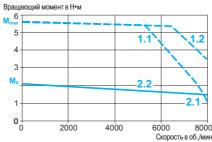
230 В, однофазный


С преобразователем LXM 05●D17M2

230 В, однофазный



С преобразователем LXM 05●D10M3X


230 В, трехфазный

С преобразователем LXM 05●D17M3X 230 В, трехфазный

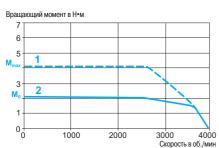
С преобразователем LXM 05●D14N4 400/480 В, трехфазный

- Пиковый момент вращения
- Продолжительный момент вращения
- 1.1 Пиковый момент вращения при 400 В, трехфазный
- 2.1 Продолжительный момент вращения при 400 В, трехфазный
- 1.2 Пиковый момент вращения при 480 В, трехфазный
- 2.2 Продолжительный момент вращения при 480 В, трехфазный

Представление: стр. 61850/2

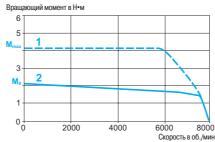
Каталожные номера: стр. 61852/2

стр. 61853/2

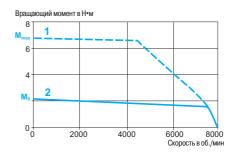

Серводвигатели BRH

Тип серводвига	теля		BSH 0702T					
Присоединенн	ый преобразователь Lexium 05		LXM 05 ●D17F1	LXM 05 ●D17M2	LXM 05 ●D28M2	LXM 05 ●D42M3X		
етевое питаюц	дее напряжение	В	115, однофазный 230, однофазный 230, трехфазный					
Настота коммута	ации	кГц	8					
Вращающий	Длительный при остановке M ₀	Н•м	2.12					
момент	Пиковый при остановке М _{мах}	Н•м	4.14		6.8			
Номинальная	Номинальный момент	Н•м	1.83	1.9				
рабочая точка	Номинальная скорость	об./мин	3000					
	Выходная мощность серводвигателя	Вт	570	600				
Максимальный 1	гок	А _{ср. кв.}	19.9					
Характеристик	и серводвигателей							
Максимальная к	аксимальная механическая скорость об./мин							
остоянные	Вращающий момент	Н∙м/А _{ср. кв.}	0.45					
(при 120°C)	Коэффициент противо-ЭДС	В _{ср. кв.} / об./мин	28					
Ротор	Числор полюсов		6					
	Момент Без тормоза J _m инерции	кг•см²	0.41					
	С тормозом Ј	кг•см²	0.482					
Статор	Сопротивление (фаза/фаза)	Ом	1.5					
при 20°C)	Индуктивность (фаза/фаза)	мГн	6.7					
	Электромагнитная постоянная времени	мс	4.47					
ормоз (в зависимости от модели)			См. стр. 61854/2					

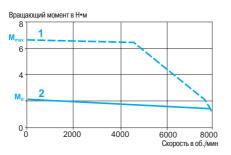
Серводвигатель BSH 07021


С преобразователем LXM 05●D17F1

115 В, однофазный


С преобразователем LXM 05•D17M2

230 В, однофазный


С преобразователем LXM 05●D28M2

230 В, однофазный

С преобразователем LXM 05●D42M3X

230 В, трехфазный

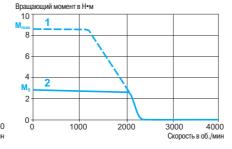
- Пиковый момент вращения
- Продолжительный момент вращения

 Представление:
 Каталожные номера:
 Размеры:

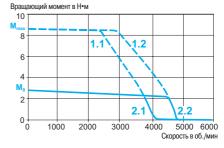
 стр. 61850/2
 стр. 61852/2
 стр. 61853/2

Серводвигатели BRH

Тип серводвига	теля		BSH 0703M					
Присоединенны	ий преобразователь Lexium 05		LXM 05 •D10M2	LXM 05 ●D10M3X	LXM 05 •D14N4			
Сетевое питающ	ее напряжение	В	230, трехфазный	230, трехфазный	400/480, трехфазный			
Частота коммута	щии	кГц	4					
Вращающий	Длительный при остановке M_0	Н•м	2.8					
момент	Пиковый при остановке Ммах	Н•м	8.6					
Номинальная	Номинальный момент	Н•м	2.63		2.4			
рабочая точка	Номинальная скорость	об./мин	1500		3000			
	Выходная мощность серводвигателя	Вт	400		750			
Максимальный т	ток	А _{ср. кв.}	8.7					
Характеристик	и серводвигателей							
Максимальная м	еханическая скорость	об./мин	8000					
Іостоянные	Вращающий момент H •м/ A _{ср. кв.}		1.48					
(при 120°C)	Коэффициент противо-ЭДС	В _{ср. кв.} / об./мин	95					
Ротор	Числор полюсов		6					
	Момент Без тормоза J _м инерции	KГ°CM ²	0.58					
	С тормозом 🗸 🗸	KГ°CM ²	0.81					
Статор	Сопротивление (фаза/фаза)	Ом	10.2					
при 20°C)	Индуктивность (фаза/фаза)	мГн	49.2					
	Электромагнитная постоянная времени мс		4.82					
Тормоз (в зависимости от модели)			См. стр. 61854/2					


Серводвигатель BSH 0703M

С преобразователем LXM 05●D10M2 230 В, однофазный


Вращающий момент в Н•м 10 3000 4000 Скорость в об./мин 1000 2000

С преобразователем LXM 05●D10M3X

230 В, трехфазный

С преобразователем LXM 05●D14N4 400/480 В, трехфазный

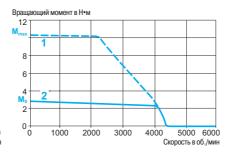
- Пиковый момент вращения Продолжительный момент вращения
- 1.1 Пиковый момент вращения при 400 В, трехфазный 2.1 Продолжительный момент вращения при 400 В,
- 1.2 Пиковый момент вращения при 480 В, трехфазный 2.2 Продолжительный момент вращения при 480 В,
- трехфазный

Представление: стр. 61850/2

Каталожные номера: стр. 61852/2

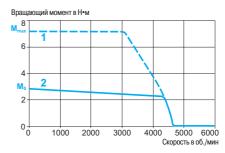
Серводвигатели BRH

Тип серводвига	теля				BSH 0703P					
Присоединенны	ый преобразов	атель Lexium 0	5		LXM 05 ●D17M2	LXM 05 ●D28M2	LXM 05 ●D17M3X	LXM 05 ●D22N4		
етевое питающее напряжение				В	230, однофазный	400/480, трехфазный				
Настота коммута	щии			кГц	8		·	·		
Вращающий	Длительный г	іри остановке	M _o	Н•м	2.8					
иомент	Пиковый при	остановке	M _{мах}	Н•м	7.16	10.3	7.16	8.75		
Іоминальная	Номинальный	і момент		Н•м	2.4					
рабочая точка	Номинальная	скорость		об./мин	3000					
	Выходная мог	цность серводви	гателя	Вт	750					
Максимальный т	Т аксимальный ток			A _{ср. кв.}	17					
Характеристики	і серводвигате	лей								
			об./мин	8000						
остоянные	Вращающий момент			Н∙м/А _{ср. кв.}	0.78					
при 120°C)	Коэффициент	противо-ЭДС		В _{ср. кв.} / об./мин	49					
Ротор	Числор полю	ОВ			6					
	Момент инерции	Без тормоза	J _m	кг•см²	0.58					
		С тормозом	J _m	кг•см²	0.81					
татор	Сопротивлен	ие (фаза/фаза)		Ом	2.7					
три 20°C)	Индуктивност	ъ (фаза/фаза)		мГн	13					
	Электромагнитная постоянная времени			мс	4.81					
ормоз (в зависим	иости от модели)				См. стр. 61854/2					

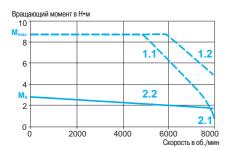

Серводвигатель BSH 0703P С преобразователем LXM 05●D17M2

230 В, однофазный

Вращающий момент в Н•м 2 1000 2000 3000 4000 5000 6000 Скорость в об./мин


С преобразователем LXM 05●D28M2

230 В, однофазный



С преобразователем LXM 05●D17M3X

230 В, трехфазный

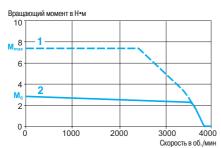
С преобразователем LXM 05●D22N4 400/480 В, трехфазный

- Пиковый момент вращения
- Продолжительный момент вращения
- 1.1 Пиковый момент вращения при 400 В, трехфазный
- 2.1 Продолжительный момент вращения при 400 В, трехфазный
- 1.2 Пиковый момент вращения при 480 В, трехфазный
- 2.2 Продолжительный момент вращения при 480 В,

Представление: Каталожные номера: стр. 61850/2 стр. 61852/2

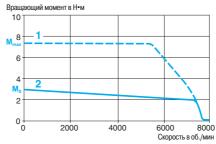
стр. 61853/2

трехфазный

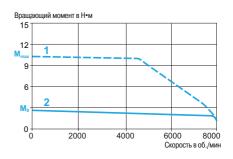

Устройство управления перемещениями Lexium 05 Серводвигатели BRH

Тип серводвига	теля			BSH 0703T					
Присоединенн	ый преобразователь Lexi	ım 05		LXM 05 ●D28F1	LXM 05 ●D28M2	LXM 05 ●D42M3X			
Сетевое питаюц	цее напряжение		В	115, однофазный	230, однофазный	230, трехфазный			
łастота коммут	ации		кГц	8					
Вращающий	Длительный при останов	ce M _o	Н•м	2.8	2.8				
момент	Пиковый при остановке	M _{max}	Н•м	7.38		10.25			
Номинальная	Номинальный момент		Н•м	2.4					
рабочая точка	Номинальная скорость		об./мин	3000					
	Выходная мощность серв	одвигателя	Вт	750					
Максимальный ток A _{ср. кв}				29.2					
Характеристик	и серводвигателей								
Максимальная механическая скорость об.,			об./мин	8000					
Іостоянные при 120°C)	Вращающий момент		H•м/A _{ср. кв.}	0.44					
	Коэффициент противо-Э	ДС	В _{ср. кв.} / об./мин	29					
Ротор	Числор полюсов			6					
	Момент Без торм инерции	103a J _m	кг•см²	0.58					
	С тормо	BOM J _m	кг•см²	0.81					
Статор	Сопротивление (фаза/фа	за)	Ом	0.91					
при 20°C)	Индуктивность (фаза/фа	sa)	мГн	4.4					
	Электромагнитная посто	нная времени	мс	4.84					
ормоз (в зависи	мости от модели)			См. стр. 61854/2					

Серводвигатель BSH 0703T


С преобразователем LXM 05●D28F1

115 В, однофазный


С преобразователем LXM 05●D28M2

230 В, однофазный

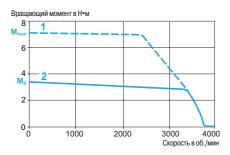
С преобразователем LXM 05●D42M3X

230 В, трехфазный

- Пиковый момент вращения Продолжительный момент вращения

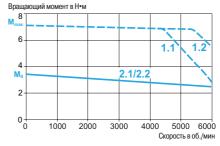
Серводвигатели BRH

Тип серводвига	теля		BSH 1001M	BSH 1001P	BSH 1001P			
Присоединенный преобразователь Lexium 05			LXM 05 •D14N4	LXM 05 ●D17M3X	LXM 05 ●D22N4			
Сетевое питающее напряжение В		В	400/480, трехфазный	230, трехфазный	400/480, трехфазный			
Настота коммута	ации	кГц	4	·	·			
Вращающий	Длительный при остановке M ₀	Н•м	3.4					
иомент	Пиковый при остановке Ммах	Н•м	7.1					
Номинальная	Номинальный момент	Н•м	3.16		2.92			
рабочая точка	Номинальная скорость	об./мин	1500	3000				
	Выходная мощность серводвигателя	Вт	500	900				
Максимальный ток А		А _{ср. кв.}	6.3	12				
Характеристик	и серводвигателей							
Лаксимальная механическая скорость об./мин			6000					
	Вращающий момент	H•м/A _{ср. кв.}	1.83	0.89				
при 120°C)	Коэффициент противо-ЭДС	В _{ср. кв.} / об./мин	115	60				
Ротор	Числор полюсов		8					
	Момент Без тормоза J_m инерции	KГ°CM ²	1.4					
	С тормозом J _m	KГ°CM ²	2.018					
Статор	Сопротивление (фаза/фаза)	Ом	13.9	3.8				
при 20°C)	Индуктивность (фаза/фаза)	мГн	64.3	17.6				
	Электромагнитная постоянная времени	мс	4.63	4.63				
ормоз (в зависи	мости от модели)		См. стр. 61854/2	'				


Серводвигатель BSH 1001M

С преобразователем LXM 05●D14N4 400/480 В, трехфазный

Вращающий момент в Н•м 1.2 2 1000 2000 3000 4000 Скорость в об./мин


BSH 1001P servo motor С преобразователем LXM 05●D17M3X

230 В, трехфазный

С преобразователем LXM 05●D22N4

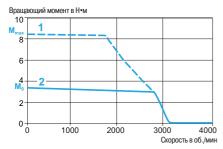
400/480 В, трехфазный

- Пиковый момент вращения Продолжительный момент вращения
- 1.1 Пиковый момент вращения при 400 В, трехфазный 2.1 Продолжительный момент вращения при 400 В,
- 1.2 Пиковый момент вращения при 480 В, трехфазный 2.2 Продолжительный момент вращения при 480 В,
- трехфазный

Schneider Blectric

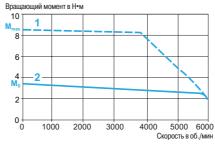
version: 1.1

Устройство управления перемещениями Lexium 05 Серводвигатели BRH

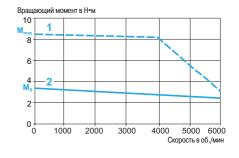

Тип серводвига	ателя			BSH 1001T				
Присоединенный преобразователь Lexium 05			LXM 05 ●D28F1	LXM 05 ●D28M2	LXM 05 ●D42M3X			
Сетевое питающее напряжение		В	115, однофазный	230, однофазный	230, трехфазный			
Частота коммут	ации		кГц	8				
Вращающий	Длительный при остановке	M_{0}	Н•м	3.4				
момент	Пиковый при остановке	M _{max}	Н•м	8.5				
Номинальная	Номинальный момент		Н•м	3.16	2.9			
рабочая точка	Номинальная скорость с		об./мин	1500	3000			
	Выходная мощность сервод	вигателя	Вт	500	900			
Максимальный ток			А _{ср. кв.}	25.1				
Характеристик	и серводвигателей							
Максимальная і	механическая скорость		об./мин	6000				
Постоянные	Вращающий момент		H•м/A _{ср. кв.}	0.45				
(при 120°C)	Коэффициент противо-ЭДС		В _{ср. кв.} / об./мин	29				
Ротор	Числор полюсов			8				
	Момент Без тормоз инерции	a J _m	КГ°СМ ²	1.4				
	С тормозом	J _m	кг•см²	2.018				
Статор	Сопротивление (фаза/фаза)		Ом	0.87				
при 20°C)	Индуктивность (фаза/фаза)		мГн	4				
	Электромагнитная постоянн	ая времени	мс	4.6				

Характеристики вращающий момент/скорость

Серводвигатель BSH 1001T


С преобразователем LXM 05●D28F1

115 В, однофазный

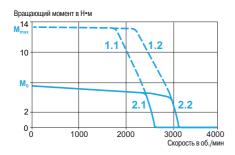

С преобразователем LXM 05●D28M2

230 В, однофазный

С преобразователем LXM 05●D42M3X

230 В, трехфазный

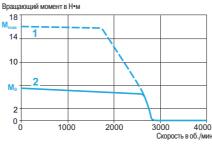
- Пиковый момент вращения Продолжительный момент вращения


version: 1.1

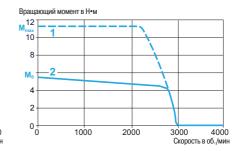
Серводвигатели BRH

Тип серводвига	теля		BSH 1002M	BSH 1002T				
Присоединенный преобразователь Lexium 05			LXM 05 ●D14N4	LXM 05 ●D28M2	LXM 05 ●D17M3X	LXM 05 ●D22N4	LXM 05 ●D42M3X	
Сетевое питающ	ее напряжение	В	400/480, трехфазный	230, однофазный	230, трехфазный	400/480, трехфазный	230, трехфазныі	
Частота коммута	щии	кГц	4	8		•		
Вращающий	Длительный при остановке $_0$	Н•м	5.5					
момент	тиковый при остановке иммах п•м		13.3	16	11.23	13.92	16	
Номинальная	Номинальный момент	Н•м	4.96			4.4		
рабочая точка	Номинальная скорость	об./мин	1500					
	Выходная мощность серводвигателя	Вт	780					
Максимальный ток A ср. 1			9	17.1			35.4	
Характеристики	1 серводвигателей							
Максимальная механическая скорость об./мин		об./мин	6000					
остоянные	Вращающий момент	Н•м/А ср. кв.	2.32	1.21	0.59			
при 120°C)	Коэффициент противо-ЭДС	В _{ср. кв.} / об./мин	146	77			37	
Ротор	Числор полюсов		8					
	Момент Без тормоза J _m инерции	кг•см²	2.31					
	С тормозом Ј	кг•см²	2.928					
Статор	Сопротивление (фаза/фаза)	Ом	8.6	2.4			0.56	
при 20°C)	Индуктивность (фаза/фаза)	мГн	45.7	12.7			3	
	Электромагнитная постоянная времени	мс	5.31	5.29			5.36	
Тормоз (в зависимости от модели)			См. стр. 61854/2					

Серводвигатель BSH 1002M

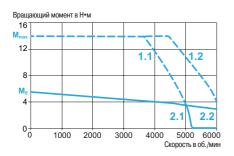

С преобразователем LXM 05●D14N4 400/480 В, трехфазный

Серводвигатель BSH 1002P


С преобразователем LXM 05●D28M2

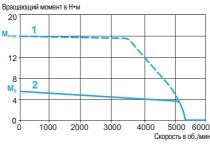
230 В, однофазный

С преобразователем LXM 05●D17M3X


230 В, трехфазный

Серводвигатель BSH 1002P (продолжение)

С преобразователем LXM 05 • D22N4


400/480 В, трехфазный

Серводвигатель BSH 1002T

С преобразователем LXM 05●D42M3X

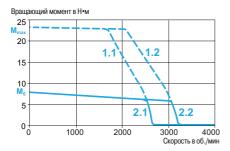
230 В, трехфазный

- Пиковый момент вращения
- Продолжительный момент вращения
- 1.1 Пиковый момент вращения при 400 В, трехфазный
- 2.1 Продолжительный момент вращения при 400 В, трехфазный
- 1.2 Пиковый момент вращения при 480 В, трехфазный
- 2.2 Продолжительный момент вращения при 480 В, трехфазный

Представление: стр. 61850/2

Каталожные номера: стр. 61852/2

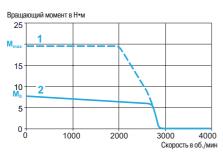
стр. 61853/2


Серводвигатели BRH

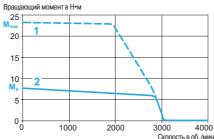
Тип серводвига	теля		BSH 1003M	BSH 1003P			
Присоединенны	ый преобразователь Lexium 05		LXM 05 ●D22N4	LXM 05 ●D28M2	LXM 05 ●D42M3X	LXM 05 ●D34N4	
Сетевое питающ	вое питающее напряжение		400/480, трехфазный	230, однофазный	230, трехфазный	400/480, трехфазный	
Іастота коммута	ации	кГц	4		_		
Вращающий	· · · · · · · · · · · · · · · · · · ·		7.8				
иомент	Пиковый при остановке М _{мах}	Н•м	23.17	19.69	23.17	23.01	
Іоминальная	Номинальный момент	кГц 4 Вновке М _о Н•м 7.8 Вке М _{ызх} Н•м 23.17 19.69 23.17 23 ИТ Н•м 6.73 5. Об./мин 1500 30 серводвигателя Вт 1100 18 А ср. кв. 14.7 28.3 Тъ Об./мин 6000 1.22 Во-ЭДС В ор. кв. / Об./мин 148 77 В Тормоза Ј _м Кг•см² 3.22	5.7				
абочая точка	Номинальная скорость	об./мин	1500		3000		
	Выходная мощность серводвигателя	Вт	1100	100			
Лаксимальный ток		А _{ср. кв.}	14.7	28.3			
Характеристик	и серводвигателей						
Лаксимальная м	леханическая скорость	,	6000				
Іостоянные	Вращающий момент	H•м/A _{ср. кв.}	2.35				
Іаксимальная ме	Коэффициент противо-ЭДС	В _{ср. кв.} / об./мин	148	77			
отор	Числор полюсов		8	1.22			
	Момент Без тормоза J _m инерции	кг•см²	3.22				
	С тормозом J _m	кг•см²	3.838				
татор	Сопротивление (фаза/фаза)	Ом	5.3	1.43			
три 20°C)	Индуктивность (фаза/фаза)	мГн	32.5	8.8			
	Электромагнитная постоянная времени	мс	6.13	6.15			
ормоз (в зависим	мости от модели)		См. стр. 61854/2	1			

Серводвигатель BSH 1003M

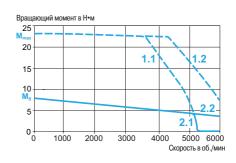
С преобразователем LXM 05●D22N4


400/480 В, трехфазный

Серводвигатель BSH 1003P


С преобразователем LXM 05●D28M2

230 В, однофазный


С преобразователем LXM 05●D42M3X

230 В, трехфазный

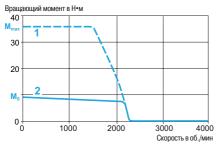
С преобразователем LXM 05●D34N4

400/480 В, трехфазный

- Пиковый момент вращения
- Продолжительный момент вращения
- 1.1 Пиковый момент вращения при 400 В, трехфазный
- 2.1 Продолжительный момент вращения при 400 В, трехфазный
- 1.2 Пиковый момент вращения при 480 В, трехфазный
- 2.2 Продолжительный момент вращения при 480 В, трехфазный

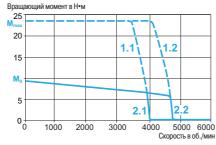
Представление: стр. 61850/2

Каталожные номера: стр. 61852/2

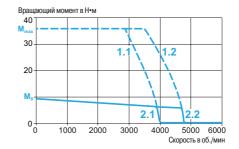

стр. 61853/2

Серводвигатели BRH

Тип серводвига	теля		BSH 1004P					
Присоединенн	ый преобразователь Lexium 05		LXM 05 ●D42M3X	LXM 05 •D34N4	LXM 05 •D57N4			
Сетевое питающее напряжение В		В	230, трехфазный	400/480, трехфазный	400/480, трехфазный			
Настота коммута	ации	кГц	8					
Вращающий	Длительный при остановке M ₀	Н•м	9.31					
иомент	Пиковый при остановке Ммах	Н•м	35.7	23.47	35.7			
Іоминальная	Номинальный момент	Н•м	8.22	7.1				
абочая точка	Номинальная скорость	об./мин	1500	3000				
	Выходная мощность серводвигателя	Вт	1300	2200				
Максимальный ток ${f A}_{{\sf cp. ks.}}$			32.3					
Характеристик	и серводвигателей							
Максимальная м	аксимальная механическая скорость об./мин		6000					
	Вращающий момент	H•м/A _{ср. кв.}	1.62					
при 120°C)	Коэффициент противо-ЭДС	В _{ср. кв.} / об./мин	103					
Ротор	Числор полюсов		8					
	Момент Без тормоза J _m инерции	KГ°CM ²	4.22					
	С тормозом Ј_m	кг•см²	5.245					
Статор	Сопротивление (фаза/фаза)	Ом	1.81					
при 20°C)	Индуктивность (фаза/фаза)	мГн	11.8					
	Электромагнитная постоянная времени	мс	6.52					
Гормоз (в зависимости от модели)			См. стр. 61854/2					


С преобразователем LXM 05●D42M3X

115 В, однофазный



С преобразователем LXM 05●D34N4

400/480 В, трехфазный

С преобразователем LXM 05●D57N4 400/480 В, трехфазный

- Пиковый момент вращения Продолжительный момент вращения
- 1.1 Пиковый момент вращения при 400 В, трехфазный 2.1 Продолжительный момент вращения при 400 В,

- 1.2 Пиковый момент вращения при 480 В, трехфазный 2.2 Продолжительный момент вращения при 480 В, трехфазный

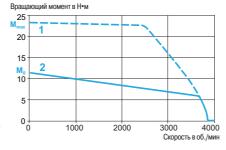
Серводвигатели BRH

Тип серводвига	теля		BSH 1401P	BSH 1401T				
Присоединенный преобразователь Lexium 05			LXM 05 ●D34N4	LXM 05 ●D42M3X				
Сетевое питаюц	цее напряжение	В	400/480, трехфазный	230, трехфазный				
Настота коммута	ации	кГц	4					
Вращающий	Длительный при остановке M ₀	Н•м	11.4					
иомент	Пиковый при остановке Ммах	Н•м	23.33					
Номинальная	Номинальный момент	Н•м	6.9					
рабочая точка	Номинальная скорость	об./мин	3000					
	Выходная мощность серводвигателя	Вт	2200					
Максимальный ток A _{ср. кв.}		20.8	37.1					
Характеристик	и серводвигателей							
Максимальная к	механическая скорость	об./мин	4000					
Тостоянные	Вращающий момент	H•м/A _{ср. кв.}	1.43	0.8				
при 120°C)	Коэффициент противо-ЭДС	В _{ср. кв.} / об./мин	100	56				
Ротор	Числор полюсов		10					
	Момент Без тормоза J_m инерции	КГ•СМ ²	7.41					
	С тормозом Ј	кг•см²	9.21					
Статор	Сопротивление (фаза/фаза)	Ом	1.41	0.44				
при 20°C)	Индуктивность (фаза/фаза)	мГн	15.6	4.9				
	Электромагнитная постоянная времен	1 MC	11.06	11.14				
Тормоз (в зависимости от модели)			См. стр. 61854/2					

Характеристики вращающий момент/скорость

Серводвигатель BSH 1401P

С преобразователем LXM 05●D34N4


400/480 В, трехфазный

Вращающий момент в Н•м 20 1.1 1.2 15 M₀ 10 2.1 1000 2000 3000 4000 Скорость в об./мин

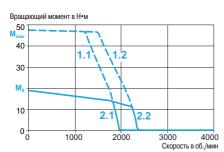
Серводвигатель BSH 1401T

С преобразователем LXM 05●D42M3X

230 В, трехфазный

- Пиковый момент вращения Продолжительный момент вращения
- 1.1 Пиковый момент вращения при 400 В, трехфазный 2.1 Продолжительный момент вращения при 400 В,
- трехфазный
- 1.2 Пиковый момент вращения при 480 В, трехфазный 2.2 Продолжительный момент вращения при 480 В,
- трехфазный

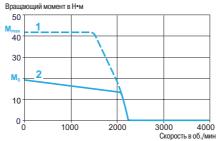
Представление: стр. 61850/2


Серводвигатели BRH

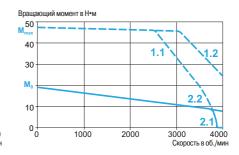
Тип серводвига	теля		BSH 1402M	BSH 1402P	BSH 1402T			
Присоединенный преобразователь Lexium 05			LXM 05 ●D34N4	LXM 05 ●D42M3X	LXM 05 ●D57N4	LXM 05 ●D42M3X		
Сетевое питаюш	е питающее напряжение		ее напряжение	В	400/480, трехфазный	230, трехфазный	400/480, трехфазный	230, трехфазный
Частота коммута	ации	кГц	4		•	•		
Вращающий	i Длительный при остановке M ₀ H-м 19.2			14.4				
момент	Пиковый при остановке М _{мах}	Н•м	47.5	41.94	47.5	24.56		
Номинальная	Номинальный момент Н•м Номинальная скорость об./мин Выходная мощность серводвигателя Вт К А _{ср. кв.} серводвигателей каническая скорость	Н•м	15		9.2			
рабочая точка Максимальный то	Номинальная скорость	об./мин	1500		3000			
	Выходная мощность серводвигателя	Вт	2350	3400		2900		
Максимальный т	гок	А _{ср. кв.}	22.4	44.1				
Характеристик	и серводвигателей							
Максимальная м	еханическая скорость	,	4000					
Постоянные	Вращающий момент	H•м/A _{ср. кв.}	2.91 1.47		0.87			
(при 120°C)	Коэффициент противо-ЭДС	В _{ср. кв.} / об./мин	199	101		59		
Ротор	Числор полюсов		10					
	Момент Без тормоза J _m инерции	кг•см²	12.68	12.68				
	С тормозом Ј	KГ°CM ²	14.48					
Статор	Сопротивление (фаза/фаза)	Ом	2.32	0.6		0.21		
(при 20°C)	Индуктивность (фаза/фаза)	мГн	28.6	28.6 7.4		2.54		
	Электромагнитная постоянная времени	мс	12.33			12.1		
Тормоз (в зависи	иости от модели)		См. стр. 61854/2					

Серводвигатель BSH 1402M

С преобразователем LXM 05●D34N4

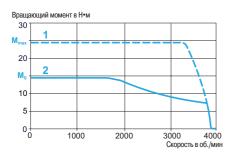

400/480 В, трехфазный

Серводвигатель BSH 1402P


С преобразователем LXM 05●D42M3X

230 В, трехфазный

С преобразователем LXM 05●D57N4


230 В, трехфазный

Серводвигатель BSH 1402T

С преобразователем LXM 05●D42M3X

230 В, трехфазный

- Пиковый момент вращения
- Продолжительный момент вращения
- 1.1 Пиковый момент вращения при 400 В, трехфазный
- 2.1 Продолжительный момент вращения при 400 В, трехфазный
- 1.2 Пиковый момент вращения при 480 В, трехфазный
- 2.2 Продолжительный момент вращения при 480 В, трехфазный

Представление: стр. 61850/2

Каталожные номера: стр. 61852/2

стр. 61853/2

Серводвигатели BRH

Тип серводвига	теля		BSH 1403M		BSH 1403P
Присоединеннь	ій преобразователь Lexium 05	LXM 05 ●D34N4		LXM 05 ●D57N4	LXM 05 •D57N4
етевое питающ	ее напряжение	В	400/480, трехфазный	•	
Іастота коммута	ции	кГц	4		
ращающий	Длительный при остановке M ₀	Н•м	25.4		
юмент	Пиковый при остановке М _{мах}	Н•м	68	71.7	57.32
оминальная	Номинальный момент	Н•м	17.2	20.3	12.43
абочая точка	Номинальная скорость	об./мин	1500		3000
	Выходная мощность серводвигателя	Вт	2700 3200		3900
Іаксимальный т	ок	А _{ср. кв.}	31.3		61
Характеристики	ı серводвигателей				'
Лаксимальная м	еханическая скорость	об./мин	4000		
остоянные	Вращающий момент	H•м/A _{ср. кв.}	3.09		1.58
при 120°C)	Коэффициент противо-ЭДС	В _{ср. кв.} / об./мин	205		105
отор	р Числор полюсов		10		
Момент Бе инерции		кг•см²	17.94		
	С тормозом J _m	кг•см²	23.44		
татор	Сопротивление (фаза/фаза)	Ом	1.52		0.4
три 20°C)	Сопротивление (фаза/фаза)	мГн	19.4		5.1
	Электромагнитная постоянная времени	мс	12.76		12.75
ормоз (в зависим	иости от модели)		См. стр. 61854/2		
Характеристи	ки вращающий момент/скорость				
Серводвигатель	BSH 1403M			Серводвигатель	BSH 1403P
		С преобразо 400/480 В, тре	вателем LXM 05●D57N4 хфазный	С преобразовате <i>400/480</i> В, трехфазн	IEM LXM 05●D57N4 ый
ращающий момент в	Н•м	Вращающий мом	иент в Н•м	Вращающий момент в Н	ł•м
80 max 60	1.1\\1.2	80 M _{max}	1.1\\1.2	80 M _{max}	1.1 1.2
40	 	40	 	40	1.1 1.2
1	X	1	1 1 1	1 1	1

- 1.1 Пиковый момент вращения при 400 В, трехфазный 2.1 Продолжительный момент вращения при 400 В, трехфазный

3000 4000 Скорость в об./мин

1000

2000

1.2 Пиковый момент вращения при 480 В, трехфазный 2.2 Продолжительный момент вращения при 480 В,

1000

трехфазный

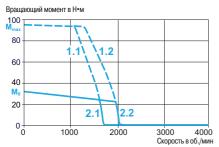
3000 4000 Скорость в об./мин

Schneider Electric

3000 4000 Скорость в об./мин

4000

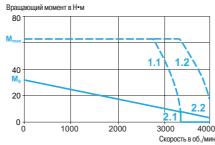
Серводвигатели BRH


Тип серводвига	этеля		BSH 1404M	BSH 1404P		
Присоединенный преобразователь Lexium 05			LXM 05 •D57N4			
Сетевое питающее напряжение		В	400/480, трехфазный			
Настота коммута	ации	кГц	4			
Вращающий	Длительный при остановке M ₀	Н•м	32.1			
юмент	Пиковый при остановке Ммах	Н•м	95	63.09		
минальная	Номинальный момент	Н•м	24.9	10.8		
абочая точка	Номинальная скорость	об./мин	1500	3000		
	Выходная мощность серводвигателя	Вт	3900	3400		
Максимальный ток А		A _{ср. кв.}	47.8	95.6		
Характеристикі	и серводвигателей					
Лаксимальная м	механическая скорость	об./мин	4000			
Іостоянные	Вращающий момент	Н∙м/А _{ср. кв.}	3.12	1.57		
три 120°C)	Коэффициент противо-ЭДС	В _{ср. кв.} / об./мин	208	104		
отор	Числор полюсов		10			
	Момент Без тормоза J _m инерции	кг•см²	23.7			
	С тормозом J _m	кг•см²	29.2			
татор	Сопротивление (фаза/фаза)	Ом	1.12	0.28		
ри 20°C)	Индуктивность (фаза/фаза)	мГн	15.6	3.9		
	Электромагнитная постоянная времени	мс	13.93			
ормоз (в зависи	мости от модели)		См. стр. 61854/2			

Характеристики вращающий момент/скорость

Серводвигатель BSH 1404M

С преобразователем LXM 05●D57N4


400/480 В, трехфазный

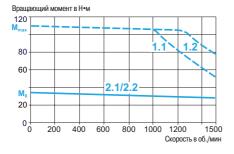
Серводвигатель BSH 1404P

С преобразователем LXM 05●D57N4

400/480 В, трехфазный

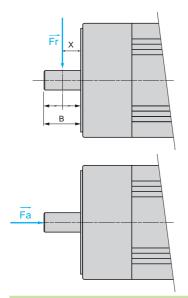
- 1.1 Пиковый момент вращения при 400 В, трехфазный 2.1 Продолжительный момент вращения при 400 В, трехфазный
- 1.2 Пиковый момент вращения при 480 В, трехфазный 2.2 Продолжительный момент вращения при 480 В, трехфазный

Серводвигатели BRH


Характеристики серводвигателей BSH 2051 М Тип серводвигателя			POWOGRAM
			BSH 2051M
Присоединенны	ый преобразователь Lexium 05		LXM 05 ●D57N4
Сетевое питаюш	етевое питающее напряжение		400/480, трехфазный
Частота коммута	ации	кГц	4
Вращающий Длительный при остановке M _о	Н•м	34.4	
момент	Пиковый при остановке М _{мах}	Н•м	110
Номинальная	Номинальный момент	Н•м	28.2
рабочая точка	Номинальная скорость	об./мин	1500
	Выходная мощность серводвигателя		4500
Максимальный ток A _{ср. кв.}		А _{ср. кв.}	40.4
Характеристик	и серводвигателей		
Максимальная м	механическая скорость	об./мин	3800
Постоянные	Вращающий момент	H•м/A _{ср. кв.}	3.1
(при 120°C)	Коэффициент противо-ЭДС	В _{ср. кв.} / об./мин	200
Ротор	Числор полюсов		10
	Момент Без тормоза J _m инерции	кг•см²	71.4
	С тормозом Ј_	кг•см²	87.4
Статор	Сопротивление (фаза/фаза)	Ом	1.1
(при 20°C)	Индуктивность (фаза/фаза)	мГн	21.3
	Электромагнитная постоянная времени	мс	19.36
Тормоз (в зависим	мости от модели)		См. стр. 61854/2

Характеристики вращающий момент/скорость

Серводвигатель BSH 2051M


С преобразователем LXM 05●D57N4

400/480 В, трехфазный

- 1.1 Пиковый момент вращения при 400 В, трехфазный 2.1 Продолжительный момент вращения при 400 В, трехфазный
- 1.2 Пиковый момент вращения при 480 В, трехфазный 2.2 Продолжительный момент вращения при 480 В, трехфазный

Серводвигатели BRH

Допустимые радиальные и осевые силы на валу двигателя

Даже при эксплуатации серводвигателей в оптимальных условиях, их срок службы ограничен сроком службы подшипников.

Условия	
Номинальный срок службы подшипников (1)	L _{10h} = 20,000 часов
Температура окружающего воздуха (температура подшипника ∼ 100°C)	40°C
Точка приложения силы	Fr приложена к середине конца вала X = B/2 (измерение B, см. стр. 61853/2

(1) Период времени эксплуатации с вероятностью появления отказа 10%

			Максимал	ьное радиа	льное усил	ие Fr				
Механическая скорость		об./мин	1000	2000	3000	4000	5000	6000	7000	8000
Серводвигатель	BSH 0551	N	340	270	240	220	200	190	180	170
	BSH 0552	N	370	290	260	230	220	200	190	190
	BSH 0553	N	390	310	270	240	230	210	200	190
	BSH 0701	N	660	520	460	410	380	360	-	_
	BSH 0702	N	710	560	490	450	410	390	-	-
	BSH 0703	N	730	580	510	460	430	400	-	_
	BSH 1001	N	900	720	630	570	530	-	-	_
	BSH 1002	N	990	790	690	620	_	-	-	-
	BSH 1003	N	1050	830	730	660	_	_	-	_
	BSH 1004	N	1070	850	740	-	-	-	-	_
	BSH 1401	N	2210	1760	1530	_	_	-	-	-
	BSH 1402	N	2430	1930	1680	-	_	_	_	_
	BSH 1403	N	2560	2030	1780	-	-	-	-	_
	BSH 1404	N	2660	2110	1840	-	-	-	-	-
	BSH 2051	N	3730	2960	2580	-	-	-	-	-

Максимальное осевое усилие: Fa = 0.2 x Fr

Представление: стр. 61850/2

Каталожные номера: стр. 61852/2

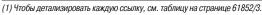
Устройство управления перемещениями Lexium 05 Серводвигатели BRH

Характеристики силовых соединительных		рьодын ателеи и г	iheni	pasobalene	*1	
Кабели, оснащенные разъемом на стороне серводв	игателя					
Тип кабеля		VW3 M5 101 Reee	VW3	M5 102 R●●●	VW3 M5 1	03 Reee
Внешняя оболочка, изоляционный материал		Полиуретан (RAL 2003 ора	нжевый), ТРМ или РР/РЕ		
Погонная емкость	пФ/м	< 70 (проводники/экранир	ующая	оболочка)		
Соличество проводников (с экраном)		[(4 x 1.5 mm ²) +	[(4 x 2	2.5 mm²) +	[(4 x 4 mm ²)	+
		(2 x 1 мм²)]				
Гип разъема		Один промышленный разъ		, ,		ышленный разъем М40
		серводвигателя) и свобод (на стороне преобразовате		ец провода		е серводвигателя) и свободны ода (на стороне преобразоват
Duouuuğ muovom		12 ± 0.2	14.3 =	L 0 2	16.3 ± 0.3	ода (на стороне преобразоват
Знешний диаметр	ММ	1	_			~ 1
Радиус изгиба	ММ	90, подходит для подключения шлейфом,	-,	одходит для ючения шлейфом,	125, подход кабельных і	цит для подключения шлейфом «аналов
		кабельных каналов		ьных каналов	The Contribution	
Рабочее напряжение	В	600				
Лаксимальная длина	м	75 (1)				
Рабочая температура	°C	- 40+ 90 (стационарный)) - 20	+ 80 (переприжной)		
Сертификаты	-	1	j, 20	. оо (передвижном)		
усртификаты Сертификаты		UL, CSA, VDE, C €, DESINA				
Кабели без разъемов						
каоели оез разъемов Тип кабеля		1,000,000,000		15110 145 222 5		1840 145 000 7
		VW3 M5 301 Reese		VW3 M5 302 Ree	••	VW3 M5 303 R
нешняя оболочка, изоляционный материал		Полиуретан (RAL 2003 ора		,		
огонная емкость	пФ/м	< 70 (проводники/экранир	рующая	,		
Соличество проводников (с экраном)		[(4 x 1.5 mm²) +		[(4 x 2.5 mm²) +		$[(4 \times 4 \text{ MM}^2) +$
		(2 x 1 мм²)]		(2 x 1 мм²)]		(2 x 1 мм²)]
ип разъема		Нет, см. стр. 61852/5				
Внешний диаметр	ММ	12 ± 0.2		14.3 ± 0.3		16.3 ± 0.3
адиус изгиба	ММ	90, подходит для подключе шлейфом, кабельных канал		110, подходит для г шлейфом, кабельны		125, подходит для подключе шлейфом, кабельных канало
абочее напряжение	В	600				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
· · · · · · · · · · · · · · · · · · ·	м	<u> </u>				
Максимальная длина	M °C	100	1 - 20 -	+ 80 (поропримной)		
Максимальная длина Рабочая температура	M °C	100 - 40+ 90 (стационарный), - 20	+ 80 (передвижной)		
Максимальная длина Рабочая температура		100), - 20	+ 80 (передвижной)		
Максимальная длина Рабочая температура Сертификаты	°C	100 - 40+ 90 (стационарный UL, CSA, VDE, C €, DESINA		, , , , ,	ателей	
Максимальная длина Рабочая температура Сертификаты Характеристики управляющих соедините	°с •льных кабел	100 - 40+ 90 (стационарный UL, CSA, VDE, C €, DESINA ей серводвигате)	тей и	, , , , ,	ателей	
Максимальная длина Рабочая температура Сертификаты <mark>Характеристики управляющих соедините</mark> Кабели, оснащенные разъемами на обоих концах (у	°с •льных кабел	100 - 40+ 90 (стационарный UL, CSA, VDE, C €, DESINA РЕЙ СЕРВОДВИГАТЕ) я и у преобразователя	тей и	, , , , ,	ателей	
Максимальная длина Рабочая температура Сертификаты Характеристики управляющих соедините Кабели, оснащенные разъемами на обоих концах (у Тип кабеля	°с •льных кабел	100 - 40+ 90 (стационарный UL, CSA, VDE, C€, DESINA 1ей серводвигателя и у преобразователя W3 M8 101 R●●●	пей и i)	преобразов	ателей	
Максимальная длина Рабочая температура Сертификаты Характеристики управляющих соедините Кабели, оснащенные разъемами на обоих концах (у Тип кабеля ^Т ип датчика положения	°с •льных кабел	100 - 40+ 90 (стационарный UL, CSA, VDE, C €, DESINA РЕЙ СЕРВОДВИГАТЕЛЯ И У преобразователя W3 M8 101 R●●● Синусно-косинусный датч	пей и і) ик полох	преобразов	ателей	
Максимальная длина Рабочая температура Сертификаты Характеристики управляющих соедините Кабели, оснащенные разъемами на обоих концах (у Тип кабеля ^Т ип датчика положения	°с •льных кабел	100 - 40+ 90 (стационарный UL, CSA, VDE, C€, DESINA 1ей серводвигателя и у преобразователя W3 M8 101 R●●●	пей и і) ик полох	преобразов	ателей	
Лаксимальная длина Рабочая температура Сертификаты Характеристики управляющих соедините Кабели, оснащенные разъемами на обоих концах (у Тип кабеля ип датчика положения Внешняя оболочка, изоляционный материал	°с •льных кабел	100 - 40+ 90 (стационарный UL, CSA, VDE, C €, DESINA РЕЙ СЕРВОДВИГАТЕЛЯ И У преобразователя W3 M8 101 R●●● Синусно-косинусный датч	пей и и) ик положной	преобразов	ателей	
Максимальная длина Рабочая температура Сертификаты Жарактеристики управляющих соедините Кабели, оснащенные разъемами на обоих концах (у Тип кабеля Гип датчика положения Внешняя оболочка, изоляционный материал Количество проводников (с экраном)	°с •льных кабел	100 - 40+ 90 (стационарный UL, CSA, VDE, С €, DESINA В и у преобразователя и у преобразователя VW3 м8 101 R●● Синусно-косинусный датч РUR (RAL 6018 зеленый), г [5 x (2 x 0.25 мм²) + (2 x 0.3 8.8 ± 0.2	ПЕЙ И 1) ИК ПОЛОЗ 10ЛИЭСТЕ 5 ММ ²)]	преобразов кения ер		
Максимальная длина Рабочая температура Сертификаты Жарактеристики управляющих соедините Кабели, оснащенные разъемами на обоих концах (у Тип кабеля Тип датчика положения Внешняя оболочка, изоляционный материал Количество проводников (с экраном) Внешний диаметр	°С ельных кабел серводвигател	100 - 40+ 90 (стационарный UL, CSA, VDE, С €, DESINA В серводвигателя и у преобразователя VW3 м8 101 R●● Синусно-косинусный датч РUR (RAL 6018 зеленый), г [5 x (2 x 0.25 мм²) + (2 x 0.1 8.8 ± 0.2 Один промышленный разз	пей и ик положнолизсте 5 мм²)] Бем М23	преобразов кения ер		-контактный гнездовой разъе
Лаксимальная длина Рабочая температура Вертификаты Жарактеристики управляющих соедините Кабели, оснащенные разъемами на обоих концах (у Тип кабеля Гип датчика положения Внешняя оболочка, изоляционный материал Количество проводников (с экраном) Внешний диаметр	°С ельных кабел серводвигател	100 - 40+ 90 (стационарный UL, CSA, VDE, С €, DESINA В и у преобразователя и у преобразователя VW3 м8 101 R●● Синусно-косинусный датч РUR (RAL 6018 зеленый), г [5 x (2 x 0.25 мм²) + (2 x 0.3 8.8 ± 0.2	пей и ик положнолизсте 5 мм²)] Бем М23	преобразов кения ер		-контактный гнездовой разъе
Максимальная длина Рабочая температура Сертификаты Жарактеристики управляющих соедините Кабели, оснащенные разъемами на обоих концах (у Тип кабеля Тип датчика положения Внешняя оболочка, изоляционный материал Количество проводников (с экраном) Внешний диаметр Тип разъема	°С ельных кабел серводвигател	100 - 40+ 90 (стационарный UL, CSA, VDE, С €, DESINA В серводвигателя и у преобразователя VW3 м8 101 R●● Синусно-косинусный датч РUR (RAL 6018 зеленый), г [5 x (2 x 0.25 мм²) + (2 x 0.1 8.8 ± 0.2 Один промышленный разз	пей и ик положнолиэсте 5 мм²)] Бем М23 азовател	преобразов кения ер (на стороне сервод	вигателя) и 12	-контактный гнездовой разъе
Лаксимальная длина Рабочая температура Рертификаты Жарактеристики управляющих соедините Кабели, оснащенные разъемами на обоих концах (у Тип кабеля Гип датчика положения Внешняя оболочка, изоляционный материал Количество проводников (с экраном) Внешний диаметр Гип разъема	°С ельных кабел серводвигател	100 - 40+ 90 (стационарный, UL, CSA, VDE, C €, DESINA РЕЙ СЕРВОДВИГАТЕЛЯ и у преобразователя VW3 M8 101 R●● Синусно-косинусный датч PUR (RAL 6018 зеленый), г [5 x (2 x 0.25 мм²) + (2 x 0.18 ± 0.2 Один промышленный разз Моlех (на стороне преобра	пей и п) ик полож полиэсте 5 мм²)] Бем М23 зазовател чения ш	преобразов кения ер (на стороне сервод	вигателя) и 12	-контактный гнездовой разъе
Максимальная длина Рабочая температура Сертификаты Жарактеристики управляющих соедините Кабели, оснащенные разъемами на обоих концах (у Тип кабеля Гип датчика положения Внешняя оболочка, изоляционный материал Количество проводников (с экраном) Внешний диаметр Гип разъема Радиус закругления	°С ельных кабел серводвигател	100 - 40+ 90 (стационарный UL, CSA, VDE, С €, DESINA РЕЙ СЕРВОДВИГАТЕ) Я И У ПРЕОБРАЗОВАТЕЛЯ УWЗ МВ 101 R●●● Синусно-косинусный датч PUR (RAL 6018 зеленый), г [5 × (2 × 0.25 мм²) + (2 × 0.3 мм²) + (2 × 0.3 мм²) 8.8 ± 0.2 Один промышленный разъмою (на стороне преобре 68, пригодный для подклю	пей и п) ик полож полиэсте 5 мм²)] Бем М23 зазовател чения ш	преобразов кения ер (на стороне сервод	вигателя) и 12	-контактный гнездовой разъе
Максимальная длина Рабочая температура Сертификаты Жарактеристики управляющих соедините Кабели, оснащенные разъемами на обоих концах (у Тип кабеля Гип датчика положения Внешняя оболочка, изоляционный материал Количество проводников (с экраном) Внешний диаметр Гип разъема Радиус закругления Рабочее напряжение Максимальная длина	°С ельных кабел серводвигател: мм мм	100 -40+90 (стационарный UL, CSA, VDE, С €, DESINA ВЕЙ СЕРВОДВИГАТЕЛЯ И У ПРЕОБРАЗОВАТЕЛЯ И У ПРЕОБРАЗОВАТЕЛЯ И У ПРЕОБРАЗОВАТЕЛЯ В 101 КВ 101	пей и ик положнолизсте 5 мм²)] Бем М23 зазовател чения ш	преобразов кения ер (на стороне сервод я) лейфом, кабельных	вигателя) и 12	-контактный гнездовой разъє
Максимальная длина Рабочая температура Сертификаты Xарактеристики управляющих соедините Кабели, оснащенные разъемами на обоих концах (у Тип кабеля Гип датчика положения Внешняя оболочка, изоляционный материал Количество проводников (с экраном) Внешний диаметр Гип разъема Радиус закругления Рабочее напряжение Максимальная длина Рабочая температура	°С •срводвигатель мм в	100 -40+ 90 (стационарный, UL, CSA, VDE, С €, DESINA ВЕЙ Серводвигателя и у преобразователя WW3 M8 101 R●● Синусно-косинусный датч PUR (RAL 6018 зеленый), г [5 x (2 x 0.25 мм²) + (2 x 0.3 молех на стороне преобрамователя Молех (на стороне преобрамовах (на стороне преобрамовах (на стороне преобрамовах (на стороне), 500 (0.5 мм²), 500 (0.5	пей и ик положнолизсте 5 мм²)] Бем М23 зазовател чения ш	преобразов кения ер (на стороне сервод я) лейфом, кабельных	вигателя) и 12	-контактный гнездовой разъе
Максимальная длина Рабочая температура Сертификаты Xарактеристики управляющих соедините Кабели, оснащенные разъемами на обоих концах (у Тип кабеля Гип датчика положения Внешняя оболочка, изоляционный материал Количество проводников (с экраном) Внешний диаметр Гип разъема Радиус закругления Рабочее напряжение Максимальная длина Рабочая температура	°С •срводвигатель мм в	100 -40+90 (стационарный, UL, CSA, VDE, С €, DESINA ВЕЙ Серводвигателя и у преобразователя VW3 M8 101 R●● Синусно-косинусный датч PUR (RAL 6018 зеленый), г [5 x (2 x 0.25 мм²) + (2 x 0.3 мm²) + (2 x 0.3 мm²) + (2 x 0.3 mm²) + (2	пей и ик положнолизсте 5 мм²)] Бем М23 зазовател чения ш	преобразов кения ер (на стороне сервод я) лейфом, кабельных	вигателя) и 12	-контактный гнездовой разъе
Лаксимальная длина Рабочая температура Сертификаты Жарактеристики управляющих соедините Кабели, оснащенные разъемами на обоих концах (у Тип кабеля ил датчика положения Внешняя оболочка, изоляционный материал Количество проводников (с экраном) Внешний диаметр ил разъема Радиус закругления Рабочее напряжение Лаксимальная длина Рабочая температура Сертификаты	°С •срводвигатель мм в	100 -40+ 90 (стационарный, UL, CSA, VDE, С €, DESINA ВЕЙ Серводвигателя и у преобразователя WW3 M8 101 R●● Синусно-косинусный датч PUR (RAL 6018 зеленый), г [5 x (2 x 0.25 мм²) + (2 x 0.3 молех на стороне преобрамователя Молех (на стороне преобрамовах (на стороне преобрамовах (на стороне преобрамовах (на стороне), 500 (0.5 мм²), 500 (0.5	пей и ик положнолизсте 5 мм²)] Бем М23 зазовател чения ш	преобразов кения ер (на стороне сервод я) лейфом, кабельных	вигателя) и 12	-контактный гнездовой разъе
Лаксимальная длина Рабочая температура Сертификаты Жарактеристики управляющих соедините Кабели, оснащенные разъемами на обоих концах (у Тип кабеля Гип датчика положения Внешняя оболочка, изоляционный материал Количество проводников (с экраном) Внешний диаметр Гип разъема Рабочее напряжение Лаксимальная длина Рабочая температура Сертификаты Кабели без разъемов	°С •срводвигатель мм в	100 -40+ 90 (стационарный, UL, CSA, VDE, С €, DESINA ВЕЙ Серводвигателя и у преобразователя WW3 M8 101 R●● Синусно-косинусный датч PUR (RAL 6018 зеленый), г [5 x (2 x 0.25 мм²) + (2 x 0.3 молех на стороне преобрамователя Молех (на стороне преобрамовах (на стороне преобрамовах (на стороне преобрамовах (на стороне), 500 (0.5 мм²), 500 (0.5	пей и ик положнолизсте 5 мм²)] Бем М23 зазовател чения ш	преобразов кения ер (на стороне сервод я) лейфом, кабельных	вигателя) и 12	-контактный гнездовой разъе
Лаксимальная длина Рабочая температура Сертификаты Характеристики управляющих соедините Кабели, оснащенные разъемами на обоих концах (у Тип кабеля Распиная оболочка, изоляционный материал Количество проводников (с экраном) Внешний диаметр Радиус закругления Рабочае напряжение Лаксимальная длина Рабочая температура Сертификаты Кабели без разъемов Тип кабеля	°С •срводвигатель мм в	100 -40+ 90 (стационарный, UL, CSA, VDE, C €, DESINA ВЕЙ Серводвигателя и у преобразователя WW3 M8 101 Reee Синусно-косинусный датч PUR (RAL 6018 зеленый), г [5 x (2 x 0.25 мм²) + (2 x 0.9 мл²) + (2 x 0.9 mл²) +	пей и положения шик положения и полизсте 5 мм²)] эем М23 азовател чения шики и м²)	преобразов кения ер (на стороне сервод я) лейфом, кабельных	вигателя) и 12	-контактный гнездовой разъе
Паксимальная длина Рабочая температура Рафоматы Жарактеристики управляющих соедините Кабели, оснащенные разъемами на обоих концах (у Тип кабеля Рафоматира (с экраном) Внешний диаметр Рапочее напряжение Раксимальная длина Рабочая температура Рафоматы Кабели без разъемов Тип кабеля Ип энкодера	°С •срводвигатель мм в	100 -40+ 90 (стационарный, UL, CSA, VDE, C €, DESINA ВЕЙ Серводвигателя и у преобразователя W3 M8 101 Reee Синусно-косинусный датч РUR (RAL 6018 зеленый), г [5 x (2 x 0.25 мм²) + (2 x 0.9 8.8 ± 0.2 Один промышленный разт Моleх (на стороне преобразователя 350 (0.25 мм²), 500 (0.5 мм 75 (1) -50+ 90 (стационарный, UL, CSA, VDE, C €, DESINA WW3 M8 221 Reeee Синусно-косинусный энко	лей и полох и	преобразов жения ер (на стороне сервод я) лейфом, кабельных + 80 (передвижной)	вигателя) и 12	-контактный гнездовой разъе
Паксимальная длина Рабочая температура Рафомать Жарактеристики управляющих соедините Кабели, оснащенные разъемами на обоих концах (у Тип кабеля Рафоматира (с экраном) В нешний диаметр Рабочее напряжение Рабочее напряжение Рабочая температура Рафомать на разъемов Тип кабеля Кабели без разъемов	°С •срводвигатель мм в	100 - 40+ 90 (стационарный, UL, CSA, VDE, C €, DESINA ВЕЙ СЕРВОДВИГАТЕЛЯ И У ПРЕОБРАЗОВАТЕЛЯ WW3 M8 101 Reee Синусно-косинусный датч PUR (RAL 6018 зеленый), г [5 x (2 x 0.25 мм²) + (2 x 0.9) 8.8 ± 0.2 Один промышленный разт Моlех (на стороне преобре 68, пригодный для подклю 350 (0.25 мм²), 500 (0.5 мм 75 (1)) - 50+ 90 (стационарный, UL, CSA, VDE, C €, DESINA WW3 M8 221 Reeee Синусно-косинусный энко Полиуретан (RAL 6018 зел	пей и положи положительной положет по	преобразов жения ер (на стороне сервод я) лейфом, кабельных + 80 (передвижной)	вигателя) и 12	-контактный гнездовой разъе
Лаксимальная длина Рабочая температура Сертификаты Жарактеристики управляющих соедините Кабели, оснащенные разъемами на обоих концах (у Тип кабеля Рабочество проводников (с экраном) Внешний диаметр Гип разъема Рабочее напряжение Лаксимальная длина Рабочая температура Сертификаты Кабели без разъемов Тип кабеля Гип набеля Гип н	мм в м °C	100 -40+ 90 (стационарный, UL, CSA, VDE, C €, DESINA ВЕЙ Серводвигате) я и у преобразователя W3 M8 101 Reee Синусно-косинусный датч PUR (RAL 6018 зеленый), г [5 x (2 x 0.25 мм²) + (2 x 0.9) 8.8 ± 0.2 Один промышленный разз Моlех (на стороне преобреба, пригодный для подклю 350 (0.25 мм²), 500 (0.5 мм 75 (1)) -50+ 90 (стационарный, UL, CSA, VDE, C €, DESINA W3 M8 221 Reeee Синусно-косинусный энко Полиуретан (RAL 6018 зел [5 x (2 x 0.25 мм²) + (2 x 0.9)]	пей и положи положительной положет по	преобразов жения ер (на стороне сервод я) лейфом, кабельных + 80 (передвижной)	вигателя) и 12	-контактный гнездовой разъе
Лаксимальная длина Рабочая температура Сертификаты Жарактеристики управляющих соедините Кабели, оснащенные разъемами на обоих концах (у Тип кабеля Рабочае положения Внешняя оболочка, изоляционный материал Внешний диаметр Гип разъема Рабочее напряжение Рабочее напряжение Рабочая температура Вертификаты Кабели без разъемов Тип кабеля Гип энкодера Внешняя оболочка, изоляционный материал Количество проводников (с экраном) Внешняя оболочка, изоляционный материал Количество проводников (с экраном) Внешний диаметр	°С •срводвигатель мм в	100 -40+ 90 (стационарный, UL, CSA, VDE, C €, DESINA ВЕЙ Серводвигате) я и у преобразователя W3 M8 101 Reee Синусно-косинусный датч PUR (RAL 6018 зеленый), г [5 × (2 × 0.25 мм²) + (2 × 0.3 мм²) 350 (0.25 мм²), 500 (0.5 мм²) 75 (1) -50+ 90 (стационарный, UL, CSA, VDE, C €, DESINA W3 M8 221 Reeee Синусно-косинусный энко, Полиуретан (RAL 6018 зел. [5 × (2 × 0.25 мм²) + (2 × 0.3 мм²) Голиуретан (RAL 6018 зел. [5 × (2 × 0.25 мм²) + (2 × 0.3 мм²) + (2 × 0.3 мм²) [5 × (2 × 0.25 мм²) + (2 × 0.3 мм²) + (2 × 0.3 мм²)	пей и положи положительной положет по	преобразов жения ер (на стороне сервод я) лейфом, кабельных + 80 (передвижной)	вигателя) и 12	-контактный гнездовой разъе
Максимальная длина Рабочая температура Сертификаты Жарактеристики управляющих соедините Кабели, оснащенные разъемами на обоих концах (у Тип кабеля Гип датчика положения Внешняя оболочка, изоляционный материал Количество проводников (с экраном) Внешний диаметр Гип разъема Рабочее напряжение Максимальная длина Рабочая температура Сертификаты Кабели без разъемов Тип кабеля Гип эксонов Внешняя оболочка, изоляционный материал Количество проводников (с экраном) Внешняя оболочка, изоляционный материал Количество проводников (с экраном) Внешний диаметр Гип разъема	мм в м °С	100 -40+ 90 (стационарный, UL, CSA, VDE, C €, DESINA РЕЙ СЕРВОДВИГАТЕЈ Я И У ПРЕОБРАЗОВАТЕЛЯ УWЗ М8 101 Reee Синусно-косинусный датч РИК (RAL 6018 зеленый), г [5 × (2 × 0.25 мм²) + (2 × 0.3 мм²) + (3 × 0.3 мм²) + (2 × 0.	лей и положения положения шик положения положен	преобразов кения ер (на стороне сервод я) лейфом, кабельных + 80 (передвижной)	вигателя) и 12	-контактный гнездовой разъе
Максимальная длина Рабочая температура Сертификаты Жарактеристики управляющих соедините Кабели, оснащенные разъемами на обоих концах (у Тип кабеля Гип датчика положения Внешняя оболочка, изоляционный материал Количество проводников (с экраном) Внешний диаметр Гип разъема Рабочее напряжение Максимальная длина Рабочая температура Сертификаты Кабели без разъемов Тип кабеля Гип эксонов Внешняя оболочка, изоляционный материал Количество проводников (с экраном) Внешняя оболочка, изоляционный материал Количество проводников (с экраном) Внешний диаметр Гип разъема	мм в м °C	100 -40+ 90 (стационарный, UL, CSA, VDE, C €, DESINA 100 100 100 100 100 100 100 1	лей и положения шистополия и положения и поло	преобразов кения ер (на стороне сервод я) лейфом, кабельных + 80 (передвижной)	вигателя) и 12	-контактный гнездовой разъе
Максимальная длина Рабочая температура Сертификаты Жарактеристики управляющих соедините Кабели, оснащенные разъемами на обоих концах (у Тип кабеля Гип датчика положения Внешняя оболочка, изоляционный материал Количество проводников (с экраном) Внешний диаметр Гип разъема Рабочее напряжение Максимальная длина Рабочая температура Сертификаты Кабели без разъемов Тип анкодера Внешняя оболочка, изоляционный материал Количество проводников (с экраном) Внешний диаметр Гип зазъема Минимальный радиус изгиба	мм в м °С	100 -40+ 90 (стационарный, UL, CSA, VDE, C €, DESINA РЕЙ СЕРВОДВИГАТЕЈ Я И У ПРЕОБРАЗОВАТЕЛЯ УWЗ М8 101 Reee Синусно-косинусный датч РИК (RAL 6018 зеленый), г [5 × (2 × 0.25 мм²) + (2 × 0.3 мм²) + (3 × 0.3 мм²) + (2 × 0.	лей и положения шистополия и положения и поло	преобразов кения ер (на стороне сервод я) лейфом, кабельных + 80 (передвижной)	вигателя) и 12	-контактный гнездовой разъє
Максимальная длина Рабочая температура Сертификаты Жарактеристики управляющих соедините Кабели, оснащенные разъемами на обоих концах (у Тип кабеля Гип датчика положения Внешняя оболочка, изоляционный материал Количество проводников (с экраном) Внешний диаметр Гип разъема Рабочее напряжение Максимальная длина Рабочая температура Сертификаты Кабели без разъемов Тип знкодера Внешняя оболочка, изоляционный материал Количество проводников (с экраном) Внешняя оболочка, изоляционный материал Количество проводников (с экраном) Внешняя оболочка, изоляционный материал Количество проводников (с экраном) Внешний диаметр Гип разъема Ийнимальный радиус изгиба Рабочее напряжение	мм в м °C	100 -40+ 90 (стационарный, UL, CSA, VDE, C €, DESINA 100 100 100 100 100 100 100 1	лей и положения шистополия и положения и поло	преобразов кения ер (на стороне сервод я) лейфом, кабельных + 80 (передвижной)	вигателя) и 12	-контактный гнездовой разъе
Максимальная длина Рабочая температура Сертификаты Жарактеристики управляющих соедините Кабели, оснащенные разъемами на обоих концах (у Тип кабеля Гип датчика положения Внешняя оболочка, изоляционный материал Количество проводников (с экраном) Внешний диаметр Гип разъема Радиус закругления Рабочее напряжение Максимальная длина Рабочая температура Сертификаты Кабели без разъемов	мм в мм мм мм мм в в мм мм в в мм мм в в мм мм	100 -40+ 90 (стационарный, UL, CSA, VDE, C €, DESINA 100 100 100 100 100 100 100 1	лей и положения шик положени	преобразов кения ер (на стороне серводня) лейфом, кабельных + 80 (передвижной)	вигателя) и 12	-контактный гнездовой разъе

Размеры: стр. 61853/2

Серводвигатели BRH

Серводвигатели BSH


Серводвигатели BSH, показанные ниже, поставляются без редуктора.

О редукторах GBX см. страницу 61855-EN/5.

BSH 05500 000 1A

Длительный крутящий момент при нулевой скорости	Пиковый крутящий момент при нулевой скорости	Номинальная выходная мощность серводвигателя	Номинальная скорость вращения	Максимальная механическая скорость вращения	Подключен- ный преобразова- тель LXM 05	№ по каталогу (1)	Macca (2)
Н•м	Н•м	Вт	об./мин	об./мин			КГ
0.5	1.08	150	3000	9000	CU70M2	BSH 0551T ••••A	1.160
	1.4	150	3000	9000	●D10F1	_	
		270	6000	9000	●D10M2	_	
		270	6000	9000	●D10M3X	_	
0.77	1.31	240	3000	9000	CU70M2	BSH 0552T ••••A	1.470
0.9	1.77	250	3000	9000	●D10F1	_	
		450	6000	9000	●D10M2	_	
		450	6000	9000	●D10M3X	_	
	2.17	250	3000	9000	CU70M2	BSH 0552P ••••A	1.470
	2.3	130	1500	9000	CU70M2	BSH 0552M ••••A	1.470
		130	1500	9000	●D10M2		
		130	1500	9000	●D10M3X	_	
	2.7	250	3000	9000	•D17F1	BSH 0552T ••••A	1.470
		250	3000	9000	•D10M2	BSH 0552P ••••A	1.470
		250	3000	9000	•D10M3X		1.110
		250	3000	9000	•D14N4	_	
1.3	3.18	350	3000	9000	●D14N4 ●D10M2	BSH 0553P ••••A	1.760
1.0	3.10	350	3000	9000	●D10M2 ●D10M3X		1.700
	3.31	350	3000	9000	•D10W3X	BSH 0553T ••••A	1.760
	3.31					B3H U3331 ####A	1.700
		350	3000	9000	•D17M2	_	
	0.5	350	3000	9000	●D17M3X	DOLLOTTOM A	1 700
	3.5	190	1500	9000	•D10M2	_BSH 0553M ●●●●A	1.760
	0.07	190	1500	9000	●D10M3X	DOLLOSSOD A	4 700
	3.87	350	3000	9000	•D14N4	BSH 0553P ••••A	1.760
1.4	2.42	380	3000	8000	•D10F1	BSH 0701T ●●●●A	2.200
		400	3000	8000	•D10M3X		
	2.66	210	1500	8000	•D10M3X	BSH 0701M ••••A	2.200
		400	3000	8000	●D10M2	BSH 0701P ●●●●A	2.200
		400	3000	8000	●D10M3X		
	3.19	400	3000	8000	●D17M2	BSH 0701T ●●●●A	2.200
		400	3000	8000	●D17M3X		
2.12	4.14	570	3000	8000	●D17F1	BSH 0702T ●●●A	2.890
		600	3000	8000	●D17M2		
	4.57	600	3000	8000	●D10M2	BSH 0702P ●●●●A	2.890
		600	3000	8000	●D10M3X		
	5.63	300	1500	8000	●D10M2	BSH 0702M ●●●●A	2.890
		300	1500	8000	●D10M3X		
		600	3000	8000	●D17M2	BSH 0702P ●●●A	2.890
		600	3000	8000	●D17M3X	_	
		600	3000	8000	●D14N4		
	6.8	600	3000	8000	●D28M2	BSH 0702T ••••A	2.890
		600	3000	8000	●D42M3X		
2.8	7.16	750	3000	8000	●D17M2	BSH 0703P ●●●A	3.620
		750	3000	8000	●D17M3X		
	7.38	750	3000	8000	●D28F1	BSH 0703T ••••A	3.620
		750	3000	8000	●D28M2	_	
	8.6	400	1500	8000	●D10M2	BSH 0703M ●●●A	3.620
		400	1500	8000	●D10M3X	_	
		750	3000	8000	●D14N4	_	
	8.75	750	3000	8000	●D22N4	BSH 0703P ••••A	3.620
	10.25	750	3000	8000	●D42M3X	BSH 0703T ••••A	3.620
	10.3	750	3000	8000	●D28M2	BSH 0703P ••••A	3.620
						_ 3 J. J	0.020

⁽²⁾ Масса серводвигателя без учета тормоза и без упаковки. Для получения массы серводвигателя с тормозом, см. страницу 61854/2.

BSH 07000 000 1A

Серводвигатели BRH

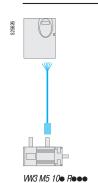
серводвигатели воп
BSH 100 ●● ●●● 1A

BSH 1401P ●●● 1A

Для заказа с	ерводвигат	еля BSH, детализируйте каждый приведенный выше ка	аталожный но	мер:			
		BSH 1401P	•	•	•	•	Α
Конец вала	IP 50	Гладкий	0				
		Со шпонкой	1				
	IP 65	Гладкий	2				
		Со шпонкой	3				
Встроенный	Однооборо	тный, SinCos Hiperface® 131,072 делений/оборот <i>(3)</i>		1			
датчик	Многообор	отный, SinCos Hiperface® 131,072 делений/оборот x 4096 оборотов <i>(3)</i>		2			
Тормоз	Без				Α		
	С				F		
Разъемы	Прямые ра	зъемы				1	
	Поворотны	е угловые разъемы				2	
Фланец	Междунаро	удный стандарт					А или Р <i>(4)</i>

Примечание: Пример, приведенный выше, для серводвигателя BSH1401P. Замените BSH1401P соответствующим каталожным номером для других серводвигателей.

Schneider

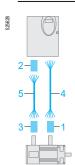

⁽¹⁾ Чтобы детализировать каждую ссылку, см. таблицу, приведенную выше.

⁽²⁾ Масса серводвигателя без учета тормоза и без упаковки. Для получения массы серводвигателя с тормозом, см. страницу 61854-EN/2.

⁽³⁾ Разрешение датчика, приведено для применения с преобразователем Lexium 05.

^{(4) &}quot;А" или "Р" зависит от модели, см. таблицу каталожных номеров, приведенную выше.

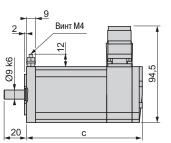
Устройство управления перемещениями Lexium 05 Серводвигатели BRH

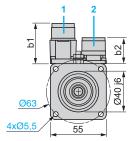

Шнуры питания						
Описание	От серво- двигателя	К преобразо- вателю	Структура	Длина	№ по каталогу	Масса
				М		КГ
Кабель снабжен одним	BSH 055●●	LXM 05•••••,	$[(4 \times 1.5 \text{ MM}^2)]$	3	VW3 M5 101 R30	0.810
промышленным разъемом М23 (со стороны серводвигателя)	BSH 070 • • BSH 100 • •	зависит от соче- тания, см стр.	+ (2 x 1 мм ²)]	5	VW3 M5 101 R50	1.210
(оо стороны осрводын атсля)	BSH 1401P	61851/2 - 61851/25	(2 X 1 WWW /J	10	VW3 M5 101 R100	2.290
	BSH 1402M			15	VW3 M5 101 R150	3.400
	BSH 1402P BSH 1403M			20	VW3 M5 101 R200	4.510
	BSH 1404M			25	VW3 M5 101 R250	6.200
				50	VW3 M5 101 R500	12.325
				75	VW3 M5 101 R750	18.450
	BSH 1401T BSH 1403P	LXM 05●D42M3X	[(4 x 2.5 mm²)	3	VW3 M5 102 R30	1.070
		LXM 05●D57N4	+ (2 x 1 мм ²)]	5	VW3 M5 102 R50	1.670
			(Z X 1 MM)]	10	VW3 M5 102 R100	3.210
				15	VW3 M5 102 R150	4.760
				20	VW3 M5 102 R200	6.300
				25	VW3 M5 102 R250	7.945
				50	VW3 M5 102 R500	16.170
				75	VW3 M5 102 R750	24.095
Кабель снабжен одним	BSH 1402T	LXM 05●D42M3X	[(4 x 4 mm²)	3	VW3 M5 103 R30	1.330
промышленным разъемом М40 (со стороны серводвигателя)	BSH 1404P BSH 2051M	LXM 05●D57N4	+ (2 x 1 мм ²)]	5	VW3 M5 103 R50	2.130
(со стороны серводвигателя)	D311 203 1W		(Z X 1 MM)]	10	VW3 M5 103 R100	4.130
				15	VW3 M5 103 R150	6.120
				20	VW3 M5 103 R200	8.090
				25	VW3 M5 103 R250	11.625
				50	VW3 M5 103 R500	23.175
				75	VW3 M5 103 R750	34.725

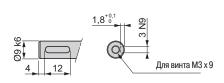
Шнуры управления						
Описание	От серво- двигателя	К преобразо- вателю	Структура	Длина	№ по каталогу	Macca
				М		КГ
Кабель датчика положения	BSH ••••	LXM 05•••••	$[5 \times (2 \times 0.25 \text{ MM}^2)]$	3	VW3 M8 101 R30	0.800
SinCos Hiperface® снабжен одним промышленным			+ (2 x 0.5 mm²)]	5	VW3 M8 101 R50	1.200
разъемом М23 (со стороны			(2 X U.3 MM)]	10	VW3 M8 101 R100	2.250
серводвигателя) и одним				15	VW3 M8 101 R150	3.450
12-контактным гнездовым разъемом Molex (со стороны				20	VW3 M8 101 R200	4.350
преобразователя)				25	VW3 M8 101 R250	4.950
				50	VW3 M8 101 R500	13.300
				75	VW3 M8 101 R750	17.650

version: 3.1

Устройство управления перемещениями Lexium 05 Серводвигатели BRH

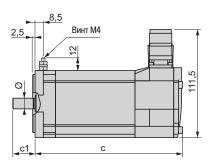

Описание	Применяет	ся для		Ссылка	Для кабеля поперечным сечением	№ по каталогу	Macca
					MM ²		КГ
Промышленный разъем М23 для создания силовых шнуров (продается в количестве от 5 шт.)		ели BSH 055●●, BSH 07 BSH 1401P, BSH 1402N BSH 1404M		1	1.5	VW3 M8 215	0.350
	Серводвигат	ели BSH 1401T и BSH 1	403P	1	2.5	VW3 M8 216	0.600
Промышленный разъем М40 для создания шнуров управления (продается в количестве от 5 шт.)	Серводвигато и BSH 2051M	ели BSH 1402T, BSH 14 I	04P	1	4	VW3 M8 217	0.850
12-контактный гнездовой разъем Molex для создания шнуров управления (продается в количестве от 5 шт.)	Преобразова (разъем CN2	тель LXM 05 servo •••)	••••	2	-	VW3 M8 213	-
Промышленный разъем М23 для создания силовых шнуров (продается в количестве от 5 шт.)	Серводвигато	ели BRH ••••		3	-	VW3 M8 214	-
Описание	От серво- двигателя	К преобразо- вателю	Структура	Ссылка	а Длина	№ по каталогу	Масса
					М		КГ
Кабели для создания силовых шнуров	BSH 055 • • BSH 070 • •	LXM 05•••••, Зависит от соче-	[(4 x 1.5 mm²) +	4	25	VW3 M5 301 R250	5.550
	BSH 100 • • BSH 1401P BSH 1402M	таний, см.стр. 61851/2 - 61851/25	(2 x 1 мм²)]		50	VW3 M5 301 R500	11.100
	BSH 1402P BSH 1403M BSH 1404M				100	VW3 M5 301 R1000	22.200
	BSH 1401T BSH 1403P	LXM 05 • D42M3X LXM 05 • D57N4	[(4 x 2.5 mm²)	4	25	VW3 M5 302 R250	7.72
			(2 x 1 мм²)]		50	VW3 M5 302 R500	15.450
					100	VW3 M5 302 R1000	30.900
	BSH 1402T BSH 1404P	LXM 05 • D42M3X LXM 05 • D57N4	[(4 x 4 mm²)	4	25	VW3 M5 303 R250	9.900
	BSH 2051M		(2 x 1 мм²)]		50	VW3 M5 303 R500	19.800
					100	VW3 M5 303 R1000	39.600
Кабели для создания шнуров управления для датчика положения	BSH ••••	LXM 05•••••	[5 x (2 x 0.25 мм	²) 5	25	VW3 M8 221 R250	5.250
			(0 0 5 3)]				
SinCos Hiperface®			(2 x 0.5 mm ²)]		50	VW3 M8 221 R500	10.500

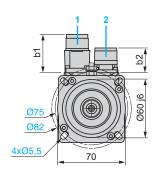

Серводвигатели BSH


ВЅН 055 (пример с прямыми разъемами: электропитания тормоза и серводвигателя 1 и датчика положения 2)

Конец вала со шпонкой

(поставляется по отдельному заказу)

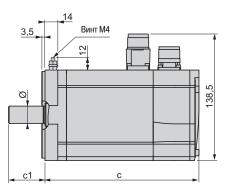


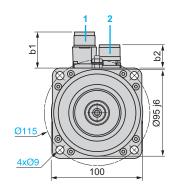


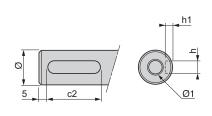

	Прямы	е разъемы	Угловы	е разъемы		
	b1	b2	b1	b2	с (без тормоза)	с (с тормозом)
BSH 0551 ●	39.5	25.5	39.5	39.5	132.5	159
BSH 0552●	39.5	25.5	39.5	39.5	154.5	181
BSH 0553●	39.5	25.5	39.5	39.5	176.5	203

BSH 070 (пример с прямыми разъемами: электропитания тормоза и серводвигателя 1 и датчика положения 2)

Конец вала со шпонкой (поставляется по отдельному заказу)



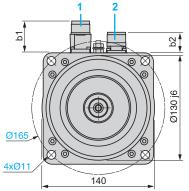


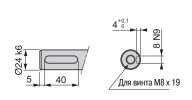

	Прямы	Прямые разъемы		е разъемы									
	b1	b2	b1	b2	с (без тормоза)	с (с тормозом)	c1	c2	сЗ	hrs	h1	Ø	Ø1 для винта
BSH 0701 ●	39.5	25.5	39.5	39.5	154	180	23	18	2.5	4 N9	2.5 +0.1	11 k6	M4 x 10
BSH 0702●	39.5	25.5	39.5	39.5	187	213	23	18	2.5	4 N9	2.5 +0.1	11 k6	M4 x 10
BSH 0703●	39.5	25.5	39.5	39.5	220	254	30	20	5	5 N9	3 0 0 1	14 k6	M5 x 12.5

BSH 100 (пример с прямыми разъемами: электропитания тормоза и серводвигателя 1 и датчика положения 2)

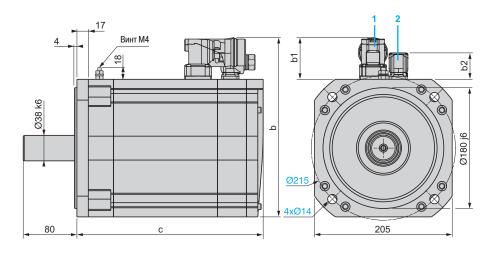
Конец вала со шпонкой (поставляется по отдельному заказу)

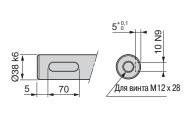



	Прямы	е разъемы	мы Угловые разъемы									
	b1	b2	b1	b2	с (без тормоза)	с (с тормозом)	c1	c2	hrs	h1	Ø	Ø1 для винта
BSH 1001●	39.5	25.5	39.5	39.5	169	200	40	30	6 N9	$3.5_{-0}^{+0.1}$	19 k6	M6 x 16
BSH 1002●	39.5	25.5	39.5	39.5	205	236	40	30	6 N9	3.5 +0.1	19 k6	M6 x 16
BSH 1003●	39.5	25.5	39.5	39.5	241	272	40	30	6 N9	3.5 +0.1	19 k6	M6 x 16
BSH 1004●	39.5	25.5	39.5	39.5	277	308	50	40	8 N9	4 +0.1	24 k6	M8 x 19
Представление:		Характеристики:		Каталожные номера:								


Серводвигатели BSH

Конец вала со шпонкой (поставляется по отдельному заказу)





	Прямые	е разъемы		Угловы	е разъемь	ı		
	b	b1	b2	b	b1	b2	с (без тормоза)	с (с тормозом)
BSH 1401 ●	178	39.5	25.5	178	39.5	39.5	218	256
BSH 1402M, 1402P	178	39.5	25.5	178	39.5	39.5	273	311
BSH 1402T	192.5	54	25.5	198.5	60	39.5	273	311
BSH 1403●	178	39.5	25.5	178	39.5	39.5	328	366
BSH 1404M	178	39.5	25.5	178	39.5	39.5	383	421
BSH 1404P	192.5	54	25.5	198.5	60	39.5	383	421

BSH 2051 (пример с вращающимися угловыми разъемами: электропитания тормоза и серводвигателя 1 и датчика положения 2)

Конец вала со шпонкой (поставляется по отдельному заказу)

	Прямые разъемы		Угловы	е разъемы	ol			
	b	b1	b2	b	b1	b2	с (без тормоза)	с (с тормозом)
BSH 2051M	259	54	25.5	265	60	39.5	321	370.5

Серводвигатели BSH

Опция: встроенный в сервомотор тормоз

Тормоз

Представление L1 L2 L3 ... 24 В Lexium 05 Контроллер тормоза Серводвигатель со встроенным тормозом

Тормоз, встроенный в серводвигатель BSH, является электромагнитным тормозом с нажимной пружиной, который блокирует вал двигателя серводвигателя сразу же, как только выключен ток нагрузки электромагнита.

В случае аварийной ситуации, такой как отключение электроэнергии или аварийной остановки, привод заторможен, таким образом значительно увеличивается безопасность.

Блокирование вала серводвигателя также необходимо в случаях перегрузки вращающего момента, такого как в случае перемещения по вертикальной координате.

Тормоз срабатывает, используя контроллер тормоза (НВС) VW3 M3 103 (см. страницу 61066/3).

НВС - внешнее устройство. Это к тому же гарантирует электрическую развязку.

Характеристики									
Тип серводвигателя	BSH	0551, 0552, 0553	0701, 0702	0703	1001, 1002, 1003	1004	1401, 1402	1403, 1404	2051
Тормозной момент M _{вг}	Н•м	0.8	2	3	9	12	23	36	80
Момент инерции ротора (только тормоз) J _{Br}	КГ•СМ²	0.0213	0.072	0.23	0.618	1.025	1.8	5.5	16
Электрическая мощность при фиксации Р _в ,	Вт	10	11	12	18	17	24	26	40
Номинальный ток	A	0.4167	0.458	0.5	0.75	0.71	1	1.083	1.667
Питающее напряжение	В	24 +6/-10%							
Время размыкания	мс	12	25	35	40	45	50	100	200
Время замыкания	мс	6	8	15	20	20	40	45	50
Масса (которую необходимо добавить к массе серводвигателя без тормоза, см. страницу 61852/2),	КГ	0.170	0.260	0.450	0.800	0.900	1.400	2.400	5.500

Каталожные номера

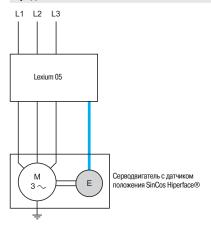
Серводвигатель BSH

Для выбора серводвигателя BSH с тормозом или без, см. каталожные номера на страница 61852/3.

version: 1.1

Schneider

Представление, характеристики, каталожные номера


Устройство управления перемещениями Lexium 05

Серводвигатели BSH

Опция: датчик положения встроенный в серводвигатель

Датчик положения встроенный в серводвигатель

Представление

Стандартное устройство измерения - SinCos Hiperface® однооборотный или многооборотный датчик положения встроен в серводвигатели BSH. Это устройство измерения отлично подходит к серии преобразователей Lexium 05.

Использование этого интерфейса позволяет:

- преобразователю автоматически распознавать данные с серводвигателя BSH;
- автоматически инициализировать контуры регулирования преобразователя, тем самым упрощая ввод в эксплуатацию устройств управления движением.

Характеристики			
Тип датчика положения		Однооборотный SinCos	Многооборотный SinCos
Число периодов синусоиды за оборот		128	
Число дискрет (1)		131,072	131,072 х 4096 оборотов
Точность датчика положения	угл. мин	±1.3	
Метод измерения		Оптический с высоким разрешением	
Интерфейс		Hiperface®	
Рабочая температура	°C	-5+110	

(1) Разрешение датчика положения, приведено для использования с преобразователем Lexium 05.

Каталожные номера

Серводвигатель BSH

Для выбора однооборотного или многооборотного SinCos Hiperface® энкодера, встроенного в серводвигатель BSH, см. ссылки на странице 61852/3.

Серводвигатели BSH

Опция: планетарные редукторы GBX

Представление

Планетарный редуктор GBX

Во многих случаях управление движением требует применения планетарных редукторов для адаптации скоростей и вращающих моментов, наряду с продолжением обеспечения требований к точности от технических приложений.

Schneider Electric предпочел использовать редукторы GBX (изготовленные Neugart) с серией серводвигателей BSH. Этих редукторы смазываются на весь срок службы и разработаны для технических применений нечувствительных к механическим люфтам. Является фактом, что их применение в комбинации с серводвигателями BSH было полностью проверено и то, что они легко монтируются, гарантируют простую, надежную работу.

Имеющиеся в наличии 5 типоразмеров (GBX 40 ... GBX 160), планетарных редукторов предлагаются с 15 передаточными отношениями (3:1 ... 100:1), см. приведенную ниже таблицу.

Непрерывные и пиковые вращающие моменты при нулевой скорости, возможные на выходе редуктора, получаются умножением характерных величин серводвигателя на передаточное отношение и кпд редуктора (0.96, 0.94 или 0.9 в зависимости от передаточного отношения).

Приведенная ниже таблица показывает самые подходящие сочетания двигателя и редуктора. Что касается других сочетаний, обращайтесь к справочным данным серводвигателей.

Передаточные отношени	я от 3:1 до 16:1											
Гип серводвигателя	Передаточно	Передаточное отношение										
• •	3:1	4:1	5:1	8:1	9:1	12:1	15:1	16:1				
SH 0551	GBX 40	GBX 40	GBX 40	GBX 40	GBX 40	GBX 40	GBX 40	GBX 40				
SH 0552	GBX 40	GBX 40	GBX 40	GBX 60	GBX 40	GBX 40	GBX 60	GBX 60				
SH 0553	GBX 40	GBX 40	GBX 40	GBX 60	GBX 40	GBX 40	GBX 60	GBX 60				
ISH 0701	GBX 60	GBX 60	GBX 60	GBX 60	GBX 60	GBX 60	GBX 60	GBX 60				
SH 0702	GBX 60	GBX 60	GBX 60	GBX 80	GBX 60	GBX 60	GBX 80	GBX 80				
SH 0703	GBX 60	GBX 60	GBX 60	GBX 80	GBX 60	GBX 80	GBX 80	GBX 80				
SH 1001	GBX 80	GBX 80	GBX 80	GBX 80	GBX 80	GBX 80	GBX 80	GBX 80				
SH 1002	GBX 80	GBX 80	GBX 80	GBX 120	GBX 80	GBX 80	GBX 120	GBX 120				
SH 1003	GBX 80	GBX 80	GBX 80	GBX 120	GBX 80	GBX 120	GBX 120	GBX 120				
3SH 1004	GBX 120	GBX 120	GBX 120	GBX 120	GBX 120	GBX 120	GBX 160	GBX 160				
SH 1401	GBX 120	GBX 120	GBX 120	GBX 120	GBX 120	GBX 120	GBX 160	GBX 160				
SH 1402	GBX 120	GBX 120	GBX 120	GBX 160	_	GBX 160	GBX 160	GBX 160				
SH 1403	GBX 120	GBX 120	GBX 120	GBX 160	_	GBX 160	GBX 160	GBX 160				
SH 1404	GBX 120	GBX 120	GBX 160	GBX 160	_	GBX 160	GBX 160	GBX 160				
SH 2051	(1)	(1)	(1)	(1)	_	_	-	-				
Передаточные отношени	я от 20:1 до 100:	1										
Гип серводвигателя	Передаточно	е отношение										
	20:1	25:1	32:1	40:1	60:1	80:1	100:1					
SH 0551	GBX 40	GBX 60	GBX 60	GBX 60	GBX 60	(1)	(1)					
SH 0552	GBX 60	GBX 60	GBX 60	(1)	(1)	(1)	(1)					
SH 0553	GBX 60	(1)	(1)	(1)	(1)	(1)	(1)					
SH 0701	GBX 80	GBX 80	GBX 80	GBX 80	GBX 120	GBX 120	GBX 120					
3SH 0702	GBX 80	GBX 80	GBX 120									
ISH 0703	GBX 80	GBX 120	GBX 120	GBX 120	GBX 120	GBX 120	GBX 120					
ISH 1001	GBX 80	GBX 120	GBX 120	GBX 120	_	_	_					
SH 1002	GBX 120	GBX 160	GBX 160	GBX 160	_	-	_					
SH 1003	GBX 120	GBX 160	GBX 160	GBX 160	_	-	_					
SH 1004	GBX 160	GBX 160	GBX 160	GBX 160	_	_	-					
SH 1401	GBX 160	GBX 160	GBX 160	GBX 160	_	-	_					
SH 1402	GBX 160	GBX 160	GBX 160	GBX 160	_	_	_					
SH 1403	GBX 160	GBX 160	GBX 160	GBX 160	_	-	_					
SH 1404	GBX 160	_	_	_	_	_	_					
ISH 2051		_		_	_	_						

Для этого сочетания Вы должны проверить, что в техническом приложении не будет превышаться максимальный вращающий момент на выходе редуктора GBX 60 (см. значения, приведенные на странице 61855/4).

Монтаж: Технические данные: Каталожные номера: стр. 61855 RU/4 стр. 61855 RU/5 стр. 61855 RU/6 стр. 61855 RU/7

Серводвигатели BSH

Опция: планетарные редукторы GBX

Тип редуктора			GBX 40	GBX 60	GBX 80	GBX 120	GBX 16		
Тип редуктора			Планетарный п	рямозубый редуктор	_				
Люфт	3:1 8:1	угл.	< 24	< 16	< 9	< 8	< 6		
	9:1 40:1	мин.	< 28	< 20	< 14	< 12	< 10		
	60:1 100:1		< 30	< 22	< 16	< 14	-		
Упругость скручиванию	3:1 8:1	Н•м/	1	2.3	6	12	38		
	9:1 40:1	угл.	1.1	2.5	6.5	13	41		
	60:1 100:1	мин.	1	2.5	6.3	12	-		
Уровень шума (1)		дБ (А)	55	58	60	65	70		
Корпус			Черный анодир	оованный алюминий					
Материал вала			C 45						
Степень защиты выхода вала от г	ныли и влажности		IP 54						
Смазка			На весь срок сл	пужбы					
Средний срок службы (2)	ч	30,000							
Монтажное положение			Произвольное положение						
Рабочая температура °C			-25+90						
кпд	3:18:1		0.96						
	9:140:1		0.94						
	60:1100:1		0.9						
Максимальное допустимое	L _{10h} = 10,000 часов	Н	200	500	950	2000	6000		
радиальное усилие (2) (3)	L _{10h} = 30,000 часов	н	160	340	650	1500	4200		
Максимальное допустимое	L _{10h} = 10,000 часов	н	200	600	1200	2800	8000		
осевое усилие (2)	L _{10h} = 30,000 часов	Н	160	450	900	2100	6000		
Момент инерции редуктора	3:1	кг•см²	0.031	0.135	0.77	2.63	12.14		
- F. J L-Lillander	4:1	KГ°CM²	0.022	0.093	0.52	1.79	7.78		
	5:1	кг•см²	0.019	0.078	0.45	1.53	6.07		
	8:1	KГ°CM²	0.017	0.065	0.39	1.32	4.63		
	9:1	кг•см²	0.03	0.131	0.74	2.62	-		
	12:1	KГ°CM ²	0.029	0.127	0.72	2.56	12.37		
	15:1	KГ°CM²	0.023	0.077	0.71	2.53	12.35		
	16:1	KГ°CM²	0.022	0.088	0.5	1.75	7.47		
	20:1	KГ°CM²	0.019	0.075	0.44	1.5	6.65		
	25:1	KГ°CM²	0.019	0.075	0.44	1.49	5.81		
	32:1	кг•см²	0.017	0.064	0.39	1.3	6.36		
	40:1	KГ°CM ²	0.016	0.064	0.39	1.3	5.28		
	60:1	KΓ•CM ²	0.029	0.076	0.51	2.57	-		
	80:1	KI°CM ²	0.023	0.075	0.5	1.5	_		
		IVI - OIM	3.010	0.070	0.0	1.0			

⁽¹⁾ Значение измеряется на расстоянии 1 м без нагрузки при скорости серводвигателя 3000 об./мин и передаточном отношении 5:1.
(2) Значение дано для скорости на выходе вала 100 об./мин в режиме S1 (циклическое отношение = 1) для электрических машин при температуре окружающего воздуха 30°С.
(3) Сила приложена к середине выхода вала.

(продолжение)

Устройство управления перемещениями Lexium 05

Серводвигатели BSH

Опция: планетарные редукторы GBX

Тип редуктора			GBX 40	GBX 60	GBX 80	GBX 120	GBX 160
Продолжительный крутящий	3:1	Н•м	11	28	85	115	400
момент на выходе M _{2N} (1)	4:1	Н∙м	15	38	115	155	450
	5:1	Н∙м	14	40	110	195	450
	8:1	Н∙м	6	18	50	120	450
	9:1	Н∙м	16.5	44	130	210	-
	12:1	Н∙м	20	44	120	260	800
	15:1	Н∙м	18	44	110	230	700
	16:1	Н•м	20	44	120	260	800
	20:1	Н•м	20	44	120	260	800
	25:1	Н∙м	18	40	110	230	700
	32:1	Н•м	20	44	120	260	800
	40:1	Н∙м	18	40	110	230	700
	60:1	Н∙м	20	44	110	260	-
	80:1	Н∙м	20	44	120	260	-
	100:1	Н•м	20	44	120	260	-
Л аксимальный крутящий	3:1	Н•м	17.6	45	136	184	640
иомент на выходе (1)	4:1	Н•м	24	61	184	248	720
	5:1	Н•м	22	64	176	312	720
	8:1	Н•м	10	29	80	192	720
	9:1	Н•м	26	70	208	336	_
	12:1	Н•м	32	70	192	416	1280
	15:1	Н•м	29	70	176	368	1120
	16:1	Н•м	32	70	192	416	1280
	20:1	Н•м	32	70	192	416	1280
	25:1	Н•м	29	64	176	368	1120
	32:1	Н•м	32	70	192	416	1280
	40:1	Н•м	29	64	176	368	1120
	60:1	Н•м	32	70	176	416	-
	80:1	Н•м	32	70	192	416	-
	100:1	Н•м	32	70	192	416	-

⁽¹⁾ Значение дано для скорости на выходе вала 100 об./мин в режиме S1 (циклическое отношение = 1) для электрических машин при температуре окружающего воздуха 30°С.

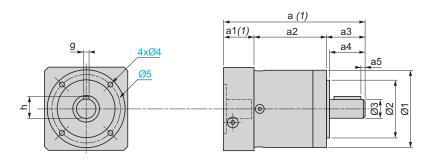
Schneider Electric

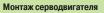
61855-EN.indd

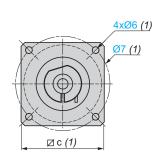
Серводвигатели BSH

Опция: планетарные редукторы GBX

Каталожные номера	Типоразмер	Передаточное отношение	№ по каталогу	Macca
	Типоразмер	передаточное отношение	NE NO KATAJIOLY	КГ
	GBX 40	3:1, 4:1, 5:1 и 8:1	GBX 040••• ••• •F	0.35
		9:1, 12:1, 15:1, 16:1 и 20:1	GBX 040●●● ●● ●F	0.45
	GBX 60	3:1, 4:1, 5:1 и 8:1	GBX 060••• ••• •F	0.90
		9:1, 12:1, 15:1, 16:1, 20:1, 25:1, 32:1 и 40:1	GBX 060••• ••• •F	1.10
		60:1	GBX 060••• ••• •F	1.30
BX●●●	GBX 80	3:1, 4:1, 5:1 и 8:1	GBX 080••• ••• •F	2.10
		9:1, 12:1, 15:1, 16:1, 20:1, 25:1, 32:1 и 40:1	GBX 080 • • • • F	2.60
		60:1, 80:1 и 100:1	GBX 080••• ••• •F (1)	3.10
	GBX 120	3:1, 4:1, 5:1 и 8:1	GBX 120●●● ●●● ●F	6.00
		9:1, 12:1, 15:1, 16:1, 20:1, 25:1, 32:1 и 40:1	GBX 120 • • • • • F	8.00
		60:1, 80:1 и 100:1	GBX 120••• ••• •F	10.00
	GBX 160	5:1 и 8:1	GBX 160••• ••• •F	18.00
		12:1, 15:1, 16:1, 20:1, 25:1, 32:1 и 40:1	GBX 160 • • • • • F	22.00


Для заказа планетарного	редуктора GBX детализируйт	е каждый вышеприведенный і		жный ном	ер вместе с:			
			GBX	•••	•••	•••	•	F
Типоразмер	Диаметр корпуса	40 мм		040				
	(см. табл. сочетаний с серводвигателями BSH	60 мм		060				
	на стр. 61855/2)	80 мм		080				
		120 мм		120				
		160 мм		160				
Передаточное отношение		3:1			003			
		4:1			004			
		5:1			005			
		8:1			800			
		9:1			009			
		12:1			012			
		15:1			015			
		16:1			016			
		20:1			020			
		25:1			025			
		32:1			032			
		40:1			040			
		60:1			060			
		80:1			080			
		100:1			100			
Подсоединенный	Тип	BSH 055				055		
серводвигатель BSH		BSH 070				070		
		BSH 100				100		
		BSH 140				140		
		BSH 205				(2)		
	Модель	BSH ●●●1					1	
		BSH ●●●2					2	
		BSH •••3					3	
		BSH •••4					4	
Самонастройка серводвигате	ля BRH							F


⁽¹⁾ Относительно комбинаций редуктора **GBX 080** и серводвигателя **BSH 055**•, пожалуйста, консультируйтесь со своим региональным коммерческим представительством. (2) Относительно сочетания с серводвигателем **BSH 2051**, пожалуйста, консультируйтесь со своим региональным коммерческим представительством.


Серводвигатели BSH

Опция: планетарные редукторы GBX

Размеры

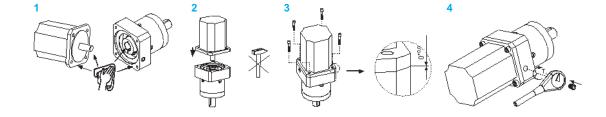
GBX	a2	a3	a4	а5	h	g	Ø1	Ø2	Ø3	Ø4	Ø5
040 003008	39	26	23	2.5	11.2	3	40	26 h7	10 h7	M4 x 6	34
040 009020	52	26	23	2.5	11.2	3	40	26 h7	10 h7	M4 x 6	34
060 003008	47	35	30	2.5	16	5	60	40 h7	14 h7	M5 x 8	52
060 009040	59.5	35	30	2.5	16	5	60	40 h7	14 h7	M5 x 8	52
060 060	72	35	30	2.5	16	5	60	40 h7	14 h7	M5 x 8	52
080 003008	60.5	40	36	4	22.5	6	80	60 h7	20 h7	M6 x 10	70
080 009040	77.5	40	36	4	22.5	6	80	60 h7	20 h7	M6 x 10	70
080 060100	95	40	36	4	22.5	6	80	60 h7	20 h7	M6 x 10	70
120 003008	74	55	50	5	28	8	115	80 h7	25 h7	M10 x 16	100
120 009040	101	55	50	5	28	8	115	80 h7	25 h7	M10 x 16	100
120 060100	128	55	50	5	28	8	115	80 h7	25 h7	M10 x 16	100
160 005, 008	104	87	80	8	43	12	160	130 h7	40 h7	M12 x 20	145
160 012040	153.5	87	80	8	43	12	160	130 h7	40 h7	M12 x 20	145

(1) Размеры a, a1, ⊠c, ⊘6 и ⊘7 зависят от сочетания планетарного редуктора и серводвигателя BSH:

Сочетания		Передаточное	отношениеѕ					
Редуктор	Серводвигатель	от 3:1 до 8:1	от 9:1 до 40:1	от 60:1 до 100:1	от 3:1 до 100:1			
		a	а	а	a1	⊠c	Ø6	Ø7
GBX 040	BSH 055●	89.5	102.5	-	24.5	60	M4	63
GBX 060	BSH 055●	106	118.5	131.5	24	60	M4	63
GBX 060	BSH 0701, 0702	106	118.5	131.5	24	70	M5	75
GBX 060	BSH 0703	113	125.5	138.5	31	70	M5	75
GBX 080 (2)	BSH 055● (2)	_	151	168.5	33.5	80	M4	63
GBX 080	BSH 070●	133.5	151	168.5	33.5	80	M5	82
GBX 080	BSH 10011003	143.5	161	178.5	43.5	100	M8	115
GBX 120	BSH 070●	-	203.5	231	47.5	115	M5	75
GBX 120	BSH 10011003	176.5	203.5	231	47.5	115	M8	115
GBX 120	BSH 1004	186.5	213.5	241	57.5	115	M8	115
GBX 120	BSH 140●	186.5	213.5	-	57.5	140	M10	165
GBX 160	BSH 10021004	-	305	-	64.5	140	M8	115
GBX 160	BSH 140●	255.5	305	-	64.5	140	M10	165

(2) Относительно этого, пожалуйста, консультируйтесь со своим региональным коммерческим представительством.

Серводвигатели BSH


Опция: планетарные редукторы GBX

Монтаж

Для установки планетарного редуктора GBX на серводвигатель BRH не требуется никакого специального инструмента. Необходимо соблюдать обычные правила для механического монтажа:

- 1 чистить опорные поверхности и уплотнения
- 2 центровать соединяемые валы и выполняют сборку в вертикальном положении
- 3 равномерно распределять силу сцепления фланца серводвигателя к фланцу редуктора во время затягивания винтов с крестовым шлицем
- 4 корректировать вращающий момент затягивания кольца ТА, используя динамометрический ключ (2... 40 Н•м в зависимости от модели редуктора)

За дополнительной информацией, обращайтесь к инструкции, поставляемой с изделиями.

