
Каталог

Лучший в отрасли образовательный ресурс по насущным вопросам энергопотребления

Электроэнергия — топливо прогресса. Так было всегда. И нынешнее увеличение потребностей экономики — как развивающихся, так и развитых стран — в сочетании с растущими опасениями в отношении воздействия на окружающую среду и сокращением запасов полезных ископаемых ставят прогресс под угрозу. Энергетический университет Schneider Electric поможет справиться с ситуацией!

Основные сведения по эффективному использованию электроэнергии

Бесплатная программа веб-обучения Энергетического Университета нацелена на сбережение электроэнергии и повышение эффективности ее использования. Разработанная мировым специалистом в области управления энергией, компанией Schneider Electric, эта программа обеспечивает доступ к актуальным рекомендациям и объективному анализу специалистов по использованию в различных отраслях.

Ориентация на реальные потребности с учетом высокой занятости обучающихся

Принимая во внимание напряженный трудовой ритм потенциальных обучающихся все курсы поделены на тридцатиминутные модули, рассчитанные на изучение, в удобное время, в удобном темпе. Ряд ассоциаций засчитывает эти курсы как дополнительное профессиональное обучение. В настоящее время охвачены следующие темы: энергопотребление и измерения, средства расчета эффективности и показателя рентабельности инвестиций (ROI). Какой бы курс вы ни выбрали, это будет решение, рассчитанное на практическое применение с немедленным положительным эффектом и способное помочь специалисту по энергоэффективности завоевать заслуженный авторитет.

Кратко об обучении:

- > Бесплатная программа
- Засчитывается как дополнительное профессиональное обучение
- > Круглосуточный доступ по сети
- Свободный график,30-минутные модули
- Контроль полученных знаний и тестирование при завершении курса
- Возможность выбора языка.
 В настоящее время обучение на немецком, итальянском, испанском, бразильском варианте португальского, китайском и русском
- Удобный веб-сайт с информационными статьями и разнообразными учебными пособиями

Станьте профессионалом в области энергоэффективности с Энергетическим Университетом!

Широкий тематический охват и ориентация на практические задачи

- Пользователи сайта в 120 странах мира
- > Более 90% освоивших тот или иной курс заявляют об интересе к остальным
- Более 90% готовы рекомендовать Энергетический Университет другим

В настоящее время предлагаются следующие курсы, основанные на актуальной информации, предоставленной специалистами по управлению электроэнергией в различных отраслях:

- комплексное решение проблем электропитания и теплового режима;
- неравномерность потребления и интеллектуальная электросеть Smart Grid;
- проведение энергоаудита;
- средства проведения энергоаудита;
- закупки электроэнергии;
- энергоэффективность: концепции и показатели;
- структура тарифов на электроэнергию;
- показатели энергоэффективности центра обработки данных;
- переход на экологичные технологии с эффективным использованием электроэнергии и минимизацией отрицательного воздействия на окружающую среду;
- системы отопления, вентиляции и кондиционирования и психрометрические таблицы;
- повышение энергоэффективности центра обработки данных за счет высокой энергетической плотности электрораспределительной подсистемы:
- использование изоляционных материалов в промышленности;
- системы освещения;
- измерение и оценка характеристик энергопотребления;

- оценка эффективности использования электрической энергии в центре обработки данных;
- измерения и контроль;
- экономия за счет энергоэффективности;
- нормативы и стандарты США в области использования электроэнергии.

Практические преимущества

Курсы Энергетического Университета одобрены или засчитываются как дополнительное профессиональное обучение по определенным специальностям следующими профессиональными ассоциациями:

- The Renewable Energy and Energy Efficiency Partnership;
- The U.S. Green Building Council;
- The International Electrical and Electronics Engineers.

Время, проведенное с пользой

Программа Энергетического Университета помогает использовать время с максимальной пользой: основное внимание уделяется наиболее важным конечным рынкам, представляющим 72% мирового энергопотребления:

- энергетика и инфраструктура;
- промышленность;
- центры обработки данных и сети;
- административные и жилые здания.

Все очень просто. И бесплатно.

Подробности на сайте www.MyEnergyUniversity.com

Lexium 32 Управление движением

<u>_</u>	
υı	μ.

Сервопривод Lexium 32
■ Описание
■ Руководство по выбору
Сервопреобразователи Lexium 32
■ Функции
■ Характеристики
■ Каталожные номера
 Дополнительное оборудование
□ Коммуникационные шины и сети
 □ Интерфейсные карты и датчики для сервопреобразователя Lexium 32M
□ Тормозные сопротивления
□ Встроенные и дополнительные входные фильтры ЭМС
□ Сетевые дроссели
□ Программное обеспечение SoMove
■ Размеры
■ Требования безопасности
■ Варианты комплектации
■ Рекомендации по установке и монтажу
Серводвигатели ВМН
■ Описание
■ Характеристики
■ Каталожные номера
■ Размеры
 Дополнительное оборудование
 Встроенный удерживающий тормоз и датчик Встроенный датчик положения ротора 81
□ Планетарные редукторы GBX
Серводвигатели BSH
■ Описание
■ Характеристики90
■ Каталожные номера102
■ Размеры
■ Дополнительное оборудование
□ Встроенный удерживающий тормоз и датчик
□ Встроенный датчик положения ротора
□ Планетарные редукторы GBX
Техническое приложение
•
Расчет параметров серводвигателей

Сервопривод LXM 32: управление печатной машиной

Сервопривод LXM 32: управление упаковочным станком

Сервопривод LXM 32: управление отрезной машиной

Представление

Гамма сервоприводов Lexium 32 включает в себя три модели сервопреобразователей, используемых в сочетании с двумя типами серводвигателей, что позволяет предлагать оптимальное решение для механизмов, требующих улучшенных технических характеристик, мощности и простоты эксплуатации сервопривода.

Lexium 32 предлагается в диапазоне мощностей от 0.15 до 7 кВт.

Сервопривод Lexium 32 разработан для реализации простого алгоритма работы с механизмом в течение всего срока службы. Программное обеспечение SoMove, возможность установки сервопреобразователей вплотную друг к другу, а также цветная кодировка разъемов для установки дополнительного оборудования, легкий доступ к разъемам на передней панели и в верхней части сервопреобразователя упрощают установку, конфигурирование и обслуживание системы «сервопреобразователь/серводвигатель». Ремонт также стал быстрее и дешевле благодаря новым способам сохранения информации при замене элементов привода на резервные.

Технические характеристики улучшены благодаря оптимизации управления двигателем: уменьшение вибрации с автоматическим расчетом параметров, блок контроля скорости, дополнительный полосовой режекторный фильтр. Такая оптимизация увеличивает производительность механизма.

Компактные размеры сервопреобразователей и серводвигателей обеспечивают высокую мощность при минимальных размерах, позволяя уменьшить габариты механизма и его стоимость.

Карты стандартных протоколов связи и интерфейсные карты датчиков позволяют интегрировать Lexium 32 в большинство известных в настоящее время систем управления.

Встроенная функция безопасности и возможность использования дополнительных функций (карт) безопасности уменьшают время разработки системы управления и позволяют соответствовать требованиям стандартов безопасности.

Применение в производственных механизмах

Сервопривод Lexium 32 содержит функциональные возможности, обеспечивающие применение в наиболее распространенных производственных механизмах, включая:

- Печатное дело: нарезка, управление позиционированием и т.д.
- Упаковочные механизмы: резка, розлив, укупорка, маркировка и т.д.
- Текстильная промышленность: намотка, прядение, ткачество, вышивание и т.д.
- Транспортировка: подача, укладка на поддоны, складирование, переборка и т.д.
- Грузоподъемное оборудование: краны, лебедки и т.д.
- Фиксация, резка «на лету», печать, маркировка и т.д.

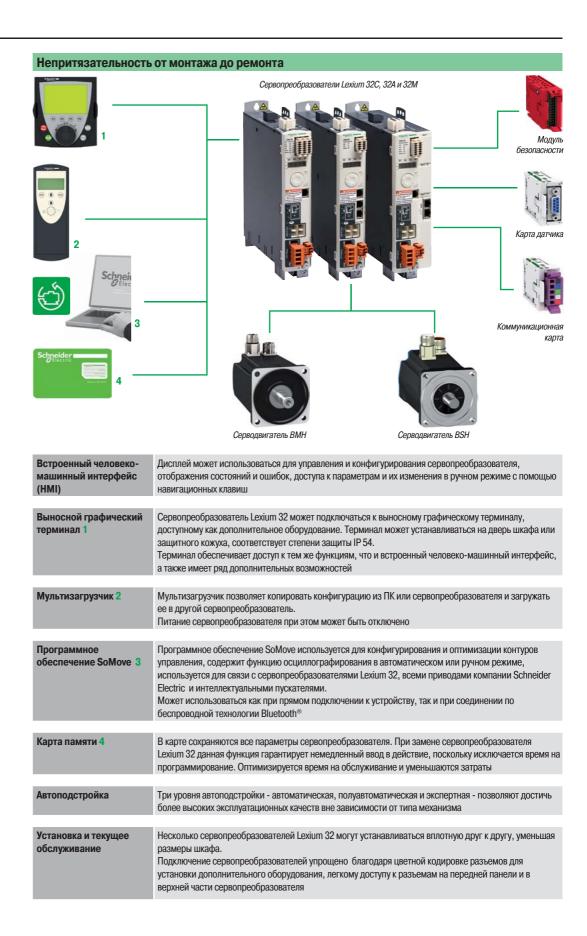
Описание

Сервопривод Lexium 32 предназначен для работы с двигателями мощностью от 0.15 кВт до 7 кВт. Напряжение питающей сети может быть следующим:

- 110...120 В, однофазное, от 0.15 до 0.8 кВт (LXM 32●●●M2)
- 200...240 B, однофазное, от 0.3 до 1.6 кВт (LXM 32●●●M2)
- 380...480 B, трехфазное, от 0.4 до 7 кВт (LXM 32 • N4)

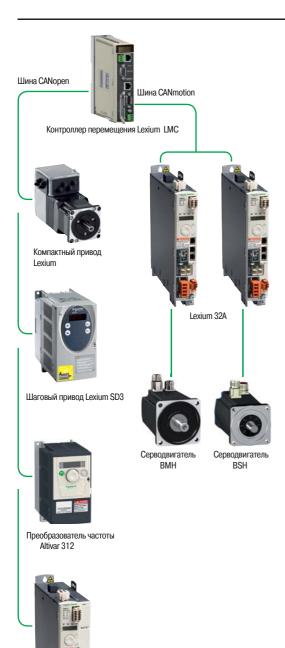
Все сервоприводы соответствуют международным стандартам МЭК/EN 61800-5-1 и МЭК/EN 61800-3, сертифицированы по UL и CSA, соответствуют требованиям директивы по защите окружающей среды (RoHS), равно как и требованиям Европейских директив для получения маркировки С€.

Электромагнитная совместимость (ЭМС)


Наличие встроенных в сервопреобразователи Lexium 32 фильтров ЭМС класса СЗ облегчает его установку в соответствии с требованиями ЭМС и делает очень недорогим приведение устройства к соответствию стандартам для получения маркировки С€.

Дополнительные фильтры ЭМС, доступные в качестве опций, могут устанавливаться пользователем для снижения уровня помех (см. стр. 46).

Дополнительное оборудование


Встраиваемое в сервопреобразователь или внешнее дополнительное оборудование, например, сетевые дроссели, тормозные резисторы и т.д., обеспечивает полную комплектацию предложения.

Функции:	Характеристики:	Каталожные номера:	Размеры:	Требования безопасности:
стр. 12	стр. 20	стр. 24	стр. 52	стр. 54

 Функции:
 Характеристики:
 Каталожные номера:
 Размеры:
 Требования безопасности:

 стр. 12
 стр. 20
 стр. 24
 стр. 52
 стр. 54

Сервопреобразователь Lexium 32М

Пример архитектуры системы управления с применением шин CANopen и CANmotion

Эксплуатационные качества

Сервопреобразователь Lexium 32 улучшает эксплуатационные характеристики механизма, используя следующие особенности:

- Перегрузочная способность: высокий пиковый ток (до 4-кратного длительного тока) увеличивает возможности перемещения
- Удельная мощность: компактный размер сервопреобразователя предполагает максимальную эффективность при малых размерах
- Высокая производительность: лучшая стабилизация скорости и более быстрый разгон улучшают качество управления
- Управление серводвигателем: снижение вибрации; блок контроля скорости и дополнительный полосовой режекторный фильтр также улучшают качество управления

Гибкость

Универсальные характеристики сервопреобразователей Lexium 32 предоставляют превосходные возможности для их использования в системах управления различной архитектуры.

В зависимости от модели, сервопреобразователь Lexium 32 содержит дискретные и аналоговые входы и выходы в стандартном исполнении, которые могут конфигурироваться в соответствии с требованиями к механизму.

Сервопреобразователь содержит интерфейс для передачи сигналов управления из различных уровней системы в зависимости от архитектуры:

- Управляющий интерфейс для управления последовательностью импульсов
- Встроенный совмещенный порт CANopen/CANmotion, позволяющий улучшить характеристики системы управления

Может подключаться к основным коммуникационным шинам и сетям, используя различные коммуникационные карты.

Доступны следующие коммуникационные протоколы: DeviceNet, Ethernet/IP и PROFIBUS DP V1.

Безопасность

Сервопреобразователи Lexium 32 являются частью системы безопасности системы управления, обладая встроенной функцией Safe Torque Off (STO), предотвращающей непреднамеренный перезапуск серводвигателя.

Данная функция соответствует стандарту MЭК/EN 61508 по уровню SIL2, определяющему функциональную безопасность электроустановок, и стандарту для систем регулируемых электроприводов MЭК/EN 61800-1.

Возможна установка дополнительного eSM модуля для улучшения функций безопасности.

Серводвигатели ВМН и BSH: динамичность и мощность

Серводвигатели ВМН и BSH - трехфазные синхронные электродвигатели.

Их характерной чертой является передача данных от серводвигателя к сервопреобразователю автоматически, используя встроенный датчик положения ротора SinCos Hiperface®. Серводвигатели могут быть как с удерживающим тормозом, так и без него.

Серводвигатели ВМН

Серводвигатели ВМН являются двигателями со средней инерцией. Они в полной мере адаптированы для применения в высоконагруженных механизмах и делают возможным регулирование перемещения в наиболее тяжелых условиях.

Данные серводвигатели обеспечивают длительный момент в диапазоне от 1.2 до 84 H⋅м при номинальных скоростях между 1200 и 6000 об/мин.

Серводвигатели BSH

Серводвигатели BSH соответствуют требованиям, предъявляемым к точным и высокодинамичным механизмам, требующим низкого момента инерции ротора. Серводвигатели компактны и обладают большой удельной мощностью.

Данные двигатели обеспечивают длительный момент в диапазоне от 0.5 до 33.4 H·м при номинальных скоростях между 2500 и 6000 об/мин.

Основные функции						
Тип сервопреобразователя		LXM 32C	LXM 32A		LXM 32M	
Коммуникационный интерфейс	Встроенный	Последовательная шина Modbus Серия импульсов	Последовательна: CANopen, шина С		Последовательная шина Modbus Серия импульсов	
	Доступный в качестве опции	-	-		CANopen, шина CANmotion, DeviceNet, Ethernet/IP, PROFIBUS DP	
	Режимы работы	Ручной режим (JOG) Синхронный вал Регулятор скорости Управление по току	Установка в исход Ручной режим (JC Регулятор скорос Управление по тог Позиционировани	OG) ти ку	Установка в исходное положение Ручной режим (JOG) Задание перемещений Синхронный вал Регулятор скорости Управление по току Позиционирование	
	Функции	Автоподстройка, контроль, управлен	ие остановом, прео	бразование параме	етров	
		-	Окно Стоп Быстрый ввод зна	чений координат	Окно Стоп Быстрый ввод значений координат Вращающиеся координатные оси Регистр координат	
Дискретные входы 24 В (1)		6, программируемые	3, программируем	ине	4, программируемые	
Входы захвата положения 24 В (1) (2)	=	-	1		2	
Дискретные выходы 24 В (1)		5, программируемые	2, программируем	ине	3, программируемые	
Аналоговые входы		2	_			
Вход импульсного регулирования		1, конфигурируемый как: ■ интерфейс RS 422 ■ 5 или 24 В типа push-pull ■ 5 или 24 В с открытым коллектором				
Выход ESIM PTO		Интерфейс RS 422				
Интерфейс «человек - машина»	Посредством встроенного дисплея	Ручной режим (положительный/отрицательный, быстрый/медленный), автоподстройка, ускоренный запуск, отображение информации и ошибок, установка в исходное положение для Lexium 32A и 32M				
Функции безопасности	Встроенные	Safe Torque Off (STO)				
	Доступные в качестве опции	-	Safe Operating Stop (SC		Safe Stop 1 (SS1) и Safe Stop 2 (SS2 Safe Operating Stop (SOS) Safe Limited Speed (SLS)	
Датчик	Встроенный	Датчик SinCos Hiperface®				
	Доступный в качестве опции	-			Резольвер Аналоговый датчик Цифровой датчик	
Архитектура		Управление: ■ Дискретные или аналоговые входы/выходы	протоколу CANopen и шине Schneider Electric и производителей, уг		Управление: ■ Программируемые контроллеро Schneider Electric или других производителей, управление по коммуникационным шинам и сетям	
Тип серводвигателя		ВМН		BSH		
Тип механизма		Тяжелая нагрузка С устойчивым регулированием переи			Высокодинамичная нагрузка Высокая удельная мощность	
Размер фланца		70, 100, 140 и 205		55, 70, 100 и 140		
Постоянный момент при нулевой скорости		От 1.2 до 84 Н∙м		От 0.5 до 33.4 Н∙м		
Тип датчика		Однооборотный SinCos: ■ 32768 точек/оборот и ■ 131072 точки/оборот Многооборотный SinCos: ■ 32768 точек/оборот x 4096 оборотов и ■ 131072 точки/оборот x 4096 оборотов		Однооборотный SinCos: ■ 131072 точки/оборот Многооборотный SinCos: ■ 131072 точки/оборот x 4096 оборотов		
Степень защиты	Корпус	IP 65 (комплект соответствия IP 67 ка оборудование)	к дополнительное	IP 65		
	Конец вала	IP 50 или IP 65 (комплект соответстви дополнительное оборудование)	IP 50 или IP 65 (комплект соответствия IP 67 как			
		(1) Если не булет спелано специальн				

Если не будет сделано специальной оговорки, дискретные входы/выходы могут использоваться в положительной логике (входы Sink, выходы Source) или в отрицательной логике (входы Source, выходы Sink).
 Входы захвата положения могут использоваться как стандартные дискретные входы.

Сервопривод Lexium 32 Однофазное напряжение питания 100...120 В

Система «сервопреобразователь Lexium 32 /серводвигатель ВМН или BSH»

Серводвигатели

Сервопреобразователи Lexium 32С, 32А и 32М

Однофазное напряжение питания 100...120 В, встроенный фильтр ЭМС

ВМН (IP 50 или IP 65)		BSH (IP 50 или IP 65)		
Тип серво-	Инерция	Тип серво-	Инерция	
двигателя	ротора	двигателя	ротора	
	K Г∙СМ ²		K Г∙СМ ²	
		BSH 0551T	0.06	
		BSH 0552T	0.10	
		BSH 0553T	0.13	
BMH 0701T	0.59			
		BSH 0701T	0.25	
		BSH 0702T	0.41	
BMH 0702T	1.13			
BMH 0703T	1.67			
		BSH 1001T	1.40	
BMH1001T	3.2			
BMH1002T	6.3			

Номинальная рабоч	Момент при нулевой скорости		
Номинальный момент	M ₀ / M _{max} (1)		
Н∙м	об/мин	Вт	Н-м/Н-м
0.49	3000	150	0.5/1.5
0.77	3000	250	0.8/1.9

^{(1) -} M_{0} : длительный момент при нулевой скорости. - M_{max} : пиковый момент при нулевой скорости.

LXM 32•D18M2 Действующее значение длительного выходного тока: 6 A		LXM 32. ФD30M2 Действующее значение длительного выходного тока: 10 A					
Номинальная рабочая точка		Момент при нулевой скорости	Номинальная рабочая точка			Момент при нулевой скорости	
Номинальный момент	Номинальная скорость	Номинальная мощность	M ₀ /M _{max} (1)	Номинальная Номинальная мощность мощность			M ₀ / M _{max} (1)
Н∙м об/мин Вт		Вт	Н-м/Н-м	Н-м	об/мин	Вт	Н-м/Н-м
1.14	3000	350	1.2/3.3				
1.35	2500	350	1.4/4.2				
1.36	2500	350	1.4/3.5				
				2.07	2500	550	2.2/6.1
				2.3	2500	600	2.5/6.4
				3.1	2000	650	3.4/8.7
				2.75	2500	700	3.3/6.3
				3.3	2000	700	3.4/8.9
				3.5	2000	750	6/10.3

Сервопривод Lexium 32 Однофазное напряжение питания 200...240 В

Система «сервопреобразователь Lexium 32 /серводвигатель ВМН или BSH»

Серводвигатели

Сервопреобразователи Lexium 32C, 32A и 32M

Однофазное напряжение питания 200...240 В, встроенный фильтр ЭМС

ВМН (IP 50 или IP 65)		BSH (IP 50 или IP 65)		
Тип серводвигателя	Инерция ротора	Тип серводвигателя	Инерция ротора	
	KT·CM ²		K Г∙СМ ²	
		BSH 0551T	0.06	
		BSH 0552T	0.10	
		BSH 0553T	0.13	
		BSH 0701T	0.25	
BMH 0701T	0.59			
		BSH 0702T	0.41	
		BSH 0703T	0.58	
BMH 0702T	1.13			
		BSH 1001T	1.40	
BMH 0703T	1.67			
BMH 1001T	3.2			
		BSH 1002T	2.31	
BMH 1002T	6.3			
BMH 1003T	9.4			
BMH 1401P	16.5			

LXM 32•U45M2 Действующее значение длительного выходного тока: 1.5 A					
Номинальная рабоч	Момент при нулевой скорости				
Номинальный момент	M ₀ / M _{max} (1)				
Н-м	об/мин	Вт	Н-м/Н-м		
0.45	6000	300	0.5/1.4		

^{(1) -} М₀: длительный момент при нулевой скорости.- М_{тах}: пиковый момент при нулевой скорости.

LXM 32•U90M2	
Действующее значение	длительного выходного тока:
3 A	

3A						
Номинальна	Момент при нулевой скорости					
Номиналь- ный момент	Номиналь- ная скорость	Номиналь- ная мощность	M ₀ / M _{max} (1)			
Н-м	об/мин	Вт	Н-м/Н-м			
0.74	6000	450	0.8/2.5			
0.84	6000	550	1.2/3			
0.94	5000	500	1.3/3.5			
1.1	4000	450	1.4/4			

LXM 32•D18M2
Действующее значение длительного выходного тока:
6A

	LXM 32●D18 Действующе 6 A		лительного вь	іходного тока:	LXM 32●D30 Действующе 10 A		лительного вь	іходного тока:
	Номинальна	я рабочая точ	ка	Момент при нулевой скорости	Номинальна	я рабочая точ	іка	Момент при нулевой скорости
	Номиналь- ный момент	Номиналь- ная скорость	Номиналь- ная мощность	M ₀ / M _{max} (1)	Номиналь- ный момент	Номиналь- ная скорость	Номиналь- ная мощность	M ₀ / M _{max} (1)
Ī	Н-м	об/мин	Вт	Н-м/Н-м	Н-м	об/мин	Вт	Н-м/Н-м
ĺ								
Ī								
Ī	1.8	5000	950	2.2/7.2				
	2.1	4000	900	2.6/7.4				
	2.1	4000	900	2.5/7.4				
	2.2	4000	900	2.7/7.5				
	2.9	3000	900	3.4/10.2				
	2.8	3000	900	3.4/10.2				
					3.7	4000	1500	5.8/16.4
ĺ					4.6	3000	1450	6/18.4
					5.6	2500	1450	8.2/22.8
ĺ					6.9	2000	1450	10.3/30.8

Сервопривод Lexium 32 Трехфазное напряжение питания 380...480 В

Система «сервопреобразователь Lexium 32 /серводвигатель ВМН или BSH»

Серводвигатели

(продолжение)

Сервопреобразователи Lexium 32С, 32А и 32М

Трехфазное напряжение питания 380...480 В, встроенный фильтр ЭМС

ВМН (IP 50 или IP 65)		BSH (IP 50 или IP 65)	
Тип серводвигателя	Инерция ротора	Тип серводвигателя	Инерция ротора
оор-од-шилолл	KT-CM ²	оородоли	KT·CM ²
		BSH 0551P	0.06
		BSH 0552P	0.10
		BSH 0553P	0.13
BMH 0701P	0.59		
BMH 0701P	0.59		
		BSH 0701P	0.25
		BSH 0702P	0.41
BMH 1001P	3.2		
BMH 0702P	1.13		
BMH 0703P	1.67		
		BSH 0703P	0.58
		BSH 1001P	1.40
BMH 1001P	3.2		
BMH 1002P	6.3		
		BSH 1002P	2.31
BMH 1003P	9.4		
		BSH 1003P	3.2
BMH 1401P	16.5		
		BSH 1004P	4.2
		BSH 1401P	7.4
BMH 1402P	32.0		
		BSH 1402T	12.7
		BSH 1403T	17.9
BMH 1403P	47.5		
		BSH 1404P	23.7
BMH 2051P	71.4		
BMH 2052P	129		
BMH 2053P	190		

тока: 1.5	A	е длительного		Действующее значение длительного выходного тока: 3 A					
Номинальная рабочая точка			Момент нулевой скорости	Номинал	Момент нулевой скорости				
Номин. момент	Номин. скорость	Номин. мощность	M ₀ / M _{max} (1)	Номин. момент	Номин. скорость	Номин. мощность	M ₀ /M _{max} (1)		
Н-м	об/мин	Вт	Н-м/Н-м	Н-м	об/мин	Вт	Н-м/Н-м		
0.48	6000	300	0.5/1.5						
0.65	6000	400	0.8/2.5						
0.65	6000	400	1.05/3.5						
1.1	3000	350	1.2/4.2						
				1.3	5000	700	1.4/4.2		
				1.32	5000	700	1.4/3.5		
				1.64	5000	850	2.2/7.6		
				1.9	4000	800	3.3/10.8		
				2.2	3000	700	2.5/7.4		

^{(1) -} $M_{_{0}}$: длительный момент при нулевой скорости.

⁻ М_{тах}: пиковый момент при нулевой скорости.

LXM 32●I)18N4			
Действую	ощее значение	длительного	выходного ток	ca:
6 A				

LXM 32●D30N4
Действующее значение длительного выходного тока:
10 A

LXM 32•D72N4
Действующее значение длительного выходного тока:
24 A

6 A				10 A				24 A			
Номинальная рабочая точка Момент при нулевой скорости				Номиналь	ная рабочая то	чка	Момент при нулевой скорости	Номинальная рабочая точка			Момент при нулевой скорости
Номин. момент	Номин. скорость	Номин. мощность	M ₀ /M _{max} (1)	Номин. момент	Номин. скорость	Номин. мощность	M ₀ / M _{max} (1)	Номин. момент	Номин. скорость	Номин. мощность	M ₀ / M _{max} (1)
Н-м	об/мин	Вт	Н-м/Н-м	Н-м	об/мин	Вт	Н-м/Н-м	Н-м	об/мин	Вт	Н-м/Н-м
2.4	5000	1300	3.4/10.2								
2.44	5000	1300	3.1/11.3								
2.7	4000	1100	3.3/9.6								
3.1	4000	1300	3.4/10.2								
3.9	4000	1600	6.2/18.4								
4	4000	1700	5.8/18.3								
				5.2	5000	2700	8.4/25.1				
				6.3	3000	2000	8/28.3				
				7.7	3000	2400	10.3/30.8				
				8.3	2500	2100	10/37.9				
				9.5	2500	2500	11.1/27				
								11.2	3000	3500	18.5/55.3
								12.3	3000	3900	19.5/59.3
								12.9	3000	4100	27.8/90.2
								14.9	3000	4700	24/75
								19	2500	5000	33.4/103.6
								25.8	2000	5400	34.4/103.4
								41.6	1500	6500	62.5/170
								52.2	1200	6500	84/232

Общий обзор функций сервопреобразователя Lexium 32

В сервопреобразователе Lexium 32 реализована возможность использования в различных рабочих режимах, что позволяет применять его для самых разных промышленных механизмов.

Функции могут быть разделены на два семейства:

- Стандартные режимы настройки:
- □ Установка в исходное положение
- □ Ручной режим (JOG) для позиционирования или регулирования скорости
- □ Автоподстройка системы «сервопреобразователь/серводвигатель»
- Рабочие режимы:
- □ Позиционирование:
- Режим движения от точки к точке
- Режим задания перемещений
- Режим синхронного вала (импульсное позиционирование и регулирование скорости)
- □ Регулятор скорости:
- Режим задания перемещений
- Режим синхронного вала
- Регулирование скорости с темпом разгона/торможения
- Прямое регулирование скорости
- □ Управление по току:
- Регулятор тока

Возможны два режима управления: режим местного управления и режим управления по коммуникационным шинам и сетям.

Режим местного управления

Параметры сервопреобразователя задаются посредством:

- Встроенного пользовательского человеко-машинного интерфейса
- Выносного графического терминала
- Программного обеспечения SoMove

Перемещения задаются:

- Аналоговыми сигналами (± 10 B)
- РТІ-сигналами (сигналы импульса/направления, сигналы А/В или СW/ССW)

В этом режиме контакты ограничения положения и установки в исходное положение не воздействуют на сервопреобразователь. Однако есть возможность ограничить перемещение, назначив дискретные входы.

Режим управления по коммуникационным шинам и сетям

Все параметры сервопреобразователя и параметры, связанные с режимом работы, могут быть доступны:

- По коммуникационным интерфейсам, в дополнение к доступу через встроенный интерфейс
- При помощи выносного графического терминала
- Посредством программного обеспечения SoMove

В нижеследующей таблице приведены источники ввода значений параметров в зависимости от типа управления и рабочего режима:

Рабочие режимы	Управление		Источник ввода заданных
	По шине или сети	Местное	значений
Режимы настройки			
Установка в исходное положение (Lexium 32A и M)			Сетевой интерфейс или ПО SoMove
Ручной режим (JOG)			Сетевой интерфейс или ПО SoMove, встроенный дисплей или выносной терминал
Автоподстройка			Сетевой интерфейс или ПО SoMove
Рабочие режимы			
Движение от точки к точке (Lexium 32A и M)			Сетевой интерфейс или ПО SoMove
Задание перемещений (Lexium 32M)			Сетевой интерфейс или ПО SoMove
Синхронный вал (Lexium 32C и M)			Сигналы импульса/направления, сигналы А/В или CW/CCW
Регулятор скорости с темпом			Сетевой интерфейс или ПО SoMove
Управление по току			Аналоговый вход, сетевой интерфейс или ПО SoMove
Функции доступн	Ы	Функ	ции недоступны

Сервопреобразователи Lexium 32

Режимы настройки

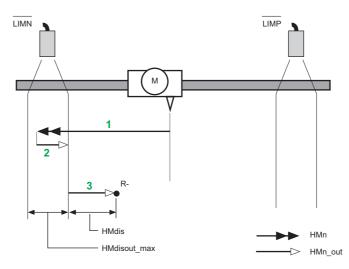
Установка в исходное положение

Режим возможен в сервопреобразователях Lexium 32A и Lexium 32M.

Перед началом абсолютного перемещения в режиме движения от точки к точке необходимо выполнить процедуру установки в исходное положение.

Настройка заключается в привязке положения оси к определенной механической координате (метке). Это положение в дальнейшем становится исходным для любого последующего перемещения оси.

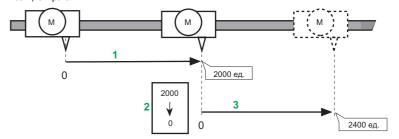
Установка в исходное положение может выполняться:


- Немедленно с записью фактического положения в регистр координат
- Перемещением до «опорного» датчика (точки начала отсчета)

Установка исходного положения с поиском опорного датчика

Возможны четыре типа установки в исходное положение с перемещением к опорному датчику:

- Установка исходного положения по левому конечному выключателю LIMN
- Установка исходного положения по правому конечному выключателю LIMP
- Установка исходного положения по контакту опорной точки REF с начальным перемещением в «отрицательном» направлении вращения
- Установка исходного положения по контакту опорной точки REF с начальным перемещением в «положительном» направлении вращения


Перемещения для установки в исходное положение могут выполняться с учетом или без учета импульса нулевого положения датчика положения ротора.

Режим установки в исходное положение: пример с использованием концевого выключателя и допуска от границы чувствительности датчика

Форсированное задание исходного положения

Форсированная установка исходного положения заключается в назначении текущей координаты серводвигателя в качестве новой «опорной» точки для задания всех последующих данных при позиционировании.

Режим форсированной установки в исходное положение

Параметры режима установки в исходное положение

Параметры режима могут передаваться посредством коммуникационной шины или сети или при помощи программного обеспечения SoMove.

После подачи напряжения значение координаты равно 0.

Перемешение со скоростью поиска НМп Перемещение со скоростью ухода HMn out Уход на расстояние HMdis со скоростью ухода HMn_out

- Начало движения к точке задания исходного положения: относительное перемещение составляет 2000 единиц
- Форсированное задание исходного положения установкой значения в 0 путем записи фактической координаты, выраженной в пользовательских единицах
- Выполнение команды абсолютного перемещения на 2400 единиц. Окончательное положение серводвигателя 2400 единиц (если форсированная установка (шаг 2) не выполнялась, окончательное значение положения равно 4400 единиц (2000+ 2400))

Характеристики: стр. 20

Каталожные номера:

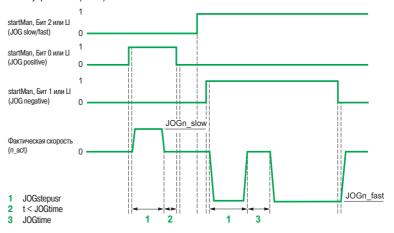
стр. 24

стр. 52

Требования безопасности: стр. 54

Сервопреобразователи Lexium 32

Режимы настройки

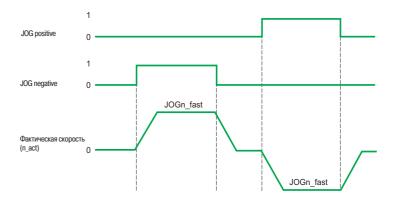

Ручной режим (JOG)

В этом режиме координатная ось перемещается вручную. Перемещение может выполняться пошагово (position JOG) или непрерывно при постоянной скорости (speed JOG). Возможны две скорости перемещения (низкая или высокая).

Для конфигурирования режима ручного перемещения используются различные параметры, передаваемые в сервопреобразователь посредством сетевых интерфейсов, программного обеспечения SoMove, встроенного пользовательского интерфейса или выносного графического терминала.

Задание значений параметров в ручном режиме при пошаговом перемещении (position JOG)

Ручной режим работает при местном управлении через программируемые дискретные входы Ц
или через коммуникационные шины и сети, используя биты слова управления (Бит 0, Бит 1 и т.д.).
При подаче высокого уровня сигнала на дискретные входы JOG positive, JOG negative или по
нарастающему фронту битов слова управления (Бит 0, Бит 1), выполняется шаг перемещения на
низкой или высокой скорости. Выбор между низкой и высокой скоростью перемещения
определяется состоянием дискретного входа JOG slow/fast или значением соответствующего бита
слова управления (Бит 2).


Управление движением механизма в ручном режиме при пошаговом перемещении (position JOG)

Задание значений параметров в ручном режиме при непрерывном перемещении (speed JOG)

Скорость регулируется пользователем. По умолчанию ее значение определяется параметром JOGn_fast. Темп разгона/торможения устанавливается на максимальное значение, конфигурируемое пользователем.

Команды JOG positive (положительное направление вращения), JOG negative (отрицательное направление вращения) выбираются параметром JOGactivate. В режиме пошагового перемещения данный параметр уже активен.

Активирование новой команды не прерывает выполнение уже действующей.

Управление движением механизма в ручном режиме при непрерывном перемещении (speed JOG)

Характеристики:

Каталожные номера: стр. 24 Размерь стр. 52 Требования безопасности: стр. 54

(

Сервопреобразователи Lexium 32

Режимы настройки и рабочие режимы

Автоподстройка системы «сервопреобразователь/серводвигатель»

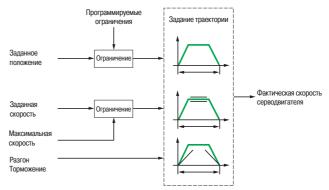
Встроенная в сервопреобразователь функция автоподстройки позволяет после первоначального конфигурирования выполнить автоматическую настройку всех параметров контуров регулирования. Выполнение функции активируется при помощи:

- Встроенного интерфейса пользователя
- Выносного графического терминала
- Программного обеспечения SoMove

Пользователь имеет возможность выбрать из трех режимов автоподстройки:

- Автоматический режим: выполняется автоматическая подстройка параметров системы сервоуправления без вмешательства пользователя. Режим используется для простых механизмов
- Полуавтоматический режим: выполняется автоматическая подстройка стандартных параметров, используемых в большинстве систем управления перемещением. Однако пользователю предоставляется возможность изменить определенные параметры для обеспечения оптимального использования системы сервопреобразователь/серводвигатель
- Экспертный режим: пользователь имеет возможность изменить стандартную конфигурацию, внося изменения в любой из настраиваемых параметров. Данный режим используется для настройки комплексных систем

Программное обеспечение SoMove также позволяет осуществлять регулировку параметров сервоуправления в любом из трех режимов.


Режим движения от точки к точке

Режим возможен в сервопреобразователях Lexium 32A и Lexium 32M.

Данный режим, обозначаемый также как PTP (point-to-point), используется для движения оси из координаты A в координату B. Перемещение может быть абсолютным, когда задается положение координаты B по отношению к исходному положению A (при этом ось предварительно устанавливается в исходное положение A), или относительным, когда перемещение выполняется относительно текущего положения оси (A). Перемещение выполняется в соответствии с параметрами разгона, замедления и скорости.

Задание значений параметров

Значения параметров могут передаваться посредством коммуникационной шины или сети или при помощи программного обеспечения SoMove.

Режим движения от точки к точке, абсолютные и относительные перемещения

Возможное применение

Контроллер перемещения или ПЛК могут управлять несколькими координатными осями, получая задание по коммуникационной шине или сети.

Такой режим часто используется:

- в погрузочно разгрузочных операциях
- в системах автоматического контроля

Для механизмов, требующих быстрого и точного перемещения с использованием нескольких осей, рекомендуется использование рабочего режима задания перемещений (см. стр. 16).

Сервопреобразователи Lexium 32

Рабочие режимы

Режим задания перемещений

Режим возможен в сервопреобразователях Lexium 32M.

Более сложный режим, нежели используемый в сервопреобразователе Lexium 05. Применяется для программирования параметров, требующихся для выполнения быстрых перемещений. Режим используется для абсолютных или относительных перемещений оси из точки А в точку В в соответствии с предустановленным заданием на перемещение, и далее из точки В в точку С в соответствии с другим заданием перемещения. Заданием уставки может быть относительное или абсолютное перемещение, а также уставка скорости. Можно сконфигурировать до 128 различных заданий на перемещение.

В последовательность заданий может быть добавлена установка в исходное положение. Перемещение выполняется в соответствии с выбранными параметрами разгона, торможения и скорости.

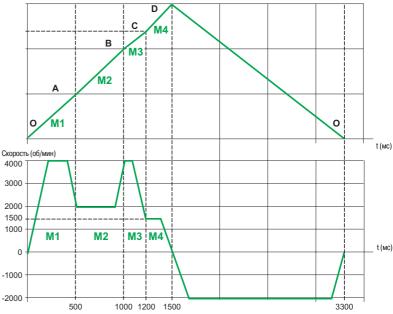
Также предусмотрена возможность выбора задания последовательности различных вариантов перемещения оси и реакции в зависимости от состояния сигнала управления.

Задание последовательности вариантов перемещения и состояний сигналов

Основываясь на открытой конфигурации ПЛК, пользователь может выбрать несколько вариантов задания последовательности перемещений.

Предусмотрена возможность соединения перемещений в заданной последовательности без перехода через нулевую скорость (связанные перемещения), путем прерывания перемещения во время или в конце выполнения текущего перемещения.

Порядок использования состояния сигнала также может быть различным: уровень или фронт на дискретном входе, запрос по коммуникационной шине, периоды ожидания. Возможно также использование логической комбинации из двух состояний.


Опция Repeat («Повтор») используется для повторного запроса на перемещение заранее установленное количество раз.

Пример задания последовательности перемещений

Представленное ниже перемещение составлено из 5 сконфигурированных шагов:

- Шаг 1 используется для перемещения из начальной точки О в точку А за 500 мс
- Шаг 2 используется для перемещения из точки А в точку В за 500 мс
- Шаг 3 используется для перемещения из точки В в точку С за 200 мс
- Шаг **4** используется для перемещения из точки **С** в точку **D** за 300 мс
- Шаг 5 используется для перемещения из точки **D** в начальную точку **O** за 1800 мс с «отрицательной» скоростью

Координата

Пример перемещения, выполняемого за 5 шагов

Примечание: возможно задерживать ось в определенном положении (при нулевой скорости) между двумя выполняемыми шагами перемещения.

Характеристики:

Каталожные номера: стр. 24 Размер стр. 52 Требования безопасности: стр. 54

C

Рабочие режимы

Режим задания перемещений (продолжение)

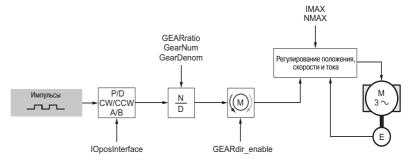
Возможное применение

Данный режим может использоваться в механизмах, требующих быстрой и точной последовательности шагов и там, где перемещения выполняются на небольшие расстояния:

- Погрузочно-разгрузочные операции
- Системы автоматического контроля
- Штамповка, перфорирование
- Сверление и т.д.

Режим синхронного вала (электронный редуктор)

(импульсное позиционирование и регулирование скорости)


Режим возможен в сервопреобразователях Lexium 32С и Lexium 32М.

Этот режим позволяет установить отношение "ведущий/ведомый" между несколькими сервопреобразователями Lexium 32 или между сервопреобразователем Lexium 32 и внешним устройством, выступающим в качестве "мастера" (внешний А/В энкодер, сигналы импульса/ направления).

Этот режим также может быть использован для позиционирования и регулирования скорости посредством последовательности импульсов (сигналы импульса/направления или CW/CCW, в зависимости от типа сервопреобразователя), посылаемых устройством управления координатными перемещениями (ПЛК, контроллер перемещения, устройство числового программного управления и т.д.).

В сервопреобразователе Lexium 32 содержится функция электронного редуктора, определяющая передаточное отношение между частотой последовательности импульсов и и частотой на входе сервопреобразователя. Это означает, что может быть использован весь диапазон скорости серводвигателя.

Передаточное отношение, которое может быть как фиксированным, так и переменным, определяется параметрами Gearnum и GearDenom сервопреобразователя Lexium 32. Параметры, определяющие передаточное отношение и направление движения, доступны в динамическом режиме по коммуникационным шинам и сетям.

Режим электронного редуктора

Возможное применение

- Погрузочно-разгрузочные операции
- Перемещение грузов (конвейеры и т.д.)
- Упаковка
- Продольная резка
- Механизмы в отрасли производства пластмасс и волокна

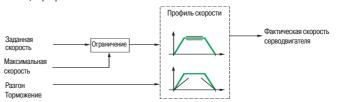
Регулирование скорости с темпом разгона/торможения

В этом рабочем режиме значение скорости устанавливается в соответствии с линейным законом разгона/торможения, параметры которого могут регулироваться. Значение уставки скорости может изменяться во время перемещения. Также возможно ограничение тока.

Позиционирование, выполняемое в фоновом режиме, допускает гибкую синхронизацию между двумя осями, находящимися в режиме регулирования скорости, возможен оперативный («на лету») переход в режим позиционирования.

Характеристики: стр. 20 Каталожные номера: стр. 24

стр. 52


Требования безопасности: стр. 54

Рабочие режимы

Регулирование скорости с темпом разгона/торможения (продолжение)

Задание значений параметров

Значения параметров могут передаваться посредством коммуникационной шины или сети или при помощи программного обеспечения SoMove.

Рабочий режим регулирования скорости с темпом разгона/торможения

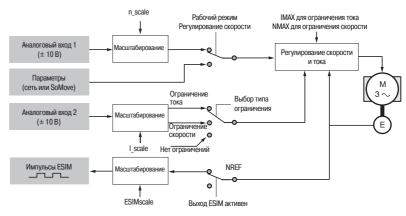
Возможное применение

Этот режим обычно используется с «бесконечными» осями, например, в управлении поворотными платформами, печатными машинами, механизмами для наклейки этикеток и т.д.

Прямое регулирование скорости

В этом режиме сервопреобразователь Lexium 32 может использоваться с контроллером перемещения, имеющим аналоговый выход. Это позволяет соответствовать требованиям высокоэффективного регулирования скорости.

Задание значений параметров


Заданные значения передаются:

- Через аналоговый вход 1 или параметр сервопреобразователя Lexium 32C
- Через параметр сервопреобразователя Lexium 32A и 32M

Задание ограничения тока или скорости передается:

- Через аналоговый вход 2 или параметр сервопреобразователя Lexium 32C
- Через параметр сервопреобразователя Lexium 32A и 32M

Примечание: для ограничения скорости также может использоваться программируемый дискретный вход.

Режим прямого регулирования скорости с ограничением тока через аналоговый вход 2

Использование совместно с аналоговым выходом контроллера перемещения

Обратная связь по положению оси может передаваться в устройство управления координатными перемещениями (ПЛК, контроллер перемещения, устройство числового программного управления и т.д.) из сервопреобразователя Lexium 32 при помощи выхода ESIM (Encoder SIMulation - имитация сигналов датчика положения ротора) по интерфейсу RS 422.

Возможное применение

- Погрузочно-разгрузочные операции
- Упаковка
- Продольная резка
- Механизмы для намотки и сматывания

Характеристики: Каталожные номера: стр. 20 стр. 24 Размерь стр. 52 Требования безопасности: стр. 54

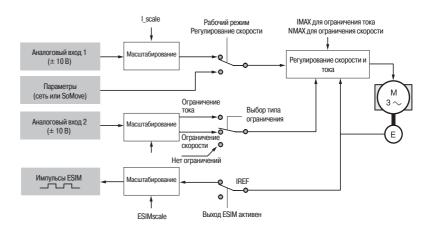
Сервопреобразователи Lexium 32

Рабочие режимы

Управление по току

Регулирование тока необходимо для управления вращающим моментом серводвигателя. Этот режим дополняет остальные режимы и применяется в механизмах, для которых управление моментом имеет первостепенное значение.

Задание значений параметров


Заданные значения передаются:

- Через аналоговый вход 1 или параметр сервопреобразователя Lexium 32C
- Через параметр сервопреобразователя Lexium 32A и 32M

Задание ограничения тока или скорости передается:

- Через аналоговый вход 2 или параметр сервопреобразователя Lexium 32C
- Через параметр сервопреобразователя Lexium 32A и 32M

Выход ESIM (Encoder SIMulation) с интерфейсом RS 422 может использоваться для передачи положения и скорости серводвигателя в устройство управления координатным перемещением (ПЛК, контроллер перемещения, устройство числового программного управления и т.д.).

Режим управления по току с ограничением скорости через аналоговый вход 2

Возможное применение

- Сборка автомобилей (механизмы с фиксированным моментом)
- Специальные механизмы

Другие функции

- Функции управления:
- □ Контроль состояния в режиме перемещения
- □ Контроль координатных сигналов
- □ Контроль сигналов, характеризующих состояние собственно сервопреобразователя
- □ Контроль коммутации
- □ Контроль передачи данных по коммуникационным шинам и сетям
- Ввод коэффициентов масштабирования
- Настройка генератора перемещений
- Активирование сигнала «Стоп»
- Запуск функции быстрого останова (Quick-Stop)
- Активирование тормоза серводвигателя через «контроллер удерживающего тормоза» HBC (Holding Brake Controller)
- Изменение направления вращения серводвигателя
- Чтение значений на аналоговых входах
- Определение логики сигналов на дискретных входах/выходах
- Возможность замены датчика положения ротора серводвигателя на внешний датчик для замкнутого контура позиционирования
- Вращаемые оси
- Регистр координат для управления дискретными выходами
- Управление двигателями сторонних производителей

Перечисленные функции могут активироваться и конфигурироваться посредством:

- Дискретных входов/выходов, многие из которых являются программируемыми
- Коммуникационных шин и сетей
- Программного обеспечения SoMove
- Встроенного пользовательского интерфейса сервопреобразователя
- Выносного графического терминала

Эксплуатационны	іе хара	актеристики		
Соответствие стандартам	_			Сервопреобразователи Lexium 32 разработаны в соответствии с международными стандартами, касающимися электрооборудования для управления промышленными механизмами, МЭК/EN 61800-5-1 (низкое напряжение) и МЭК/EN 61800-3 (помехоустойчивость, наведенные и излучаемые помехи ЭМС)
Помехоус ЭМС	тойчивості	b		МЭК/EN 61800-3, условия эксплуатации 1 и 2 МЭК/EN 61000-4-2, уровень 3 МЭК/EN 61000-4-3, уровень 3 МЭК/EN 61000-4-4, уровень 4 МЭК/EN 61000-4-5, уровень 3
Наведенн ЭМС для преобраз	ые помехи ователей	1		Со встроенным фильтром: ■ MЭК/EN 61800-3, условия эксплуатации 2, категория C3 ■ EN 55011, класс A, группа 2 С дополнительным фильтром ЭМС (1): ■ EN 55011, класс A, группа 1, MЭК/EN 61800-3, категория C2
Излучаем ЭМС для преобраз	ые помехи			 ■ EN 55011, класс А, группа 2, МЭК/EN 61800-3, категория С3 С встроенным фильтром: ■ МЭК/EN 61800-3, условия эксплуатации 2, категория С3 ■ EN 55011, класс А, группа 2
Маркировка СЄ	оватолой			Сервопреобразователи Lexium 32 имеют маркировку С€ соответствия Европейским директивам по низкому напряжению (2006/95/ЕС) и ЭМС (2004/108/ЕС)
Сертификация изделия				UL (CIIIA), CSA (Kahaga) RoHS, TÜV
Степень защиты				IP 20 в соответствии с MЭК/EN 61800-5-1, MЭК/EN 60529
Виброустойчивость				В соответствии с MЭK/EN 60068-2-6: Двойная амплитуда 1.5 мм от 3 до 13 Гц 1 g от 13 до 150 Гц
/даропрочночсть				В соответствии с MЭК/EN 61131, параграф 6.3.5.2 15 g в течение 11 мс согласно MЭК/EN 60028-2-27
Максимальная степень загрязнения				Степень 2 в соответствии с MЭК/EN 61800-5-1
/словия эксплуатации				МЭК 60721-3-3, класс 3С1
Этносительная влажності	•			В соответствии с МЭК 60721-3-3, класс ЗКЗ, от 5 до 85%, без образования конденсата
Гемпература окружающе вблизи устройства	й среды	При работе	°C	0+50 Ограничения параметров в зависимости от температуры: см. рекомендации по установке, стр. 58
		При хранении	°C	- 25+ 70
Гип охлаждения		LXM 32•U45M2 LXM 32•U90M2 LXM 32•U60N4		Естественная конвекция
		LXM 32 • D 18M2 LXM 32 • D 30M2 LXM 32 • D 12N4 LXM 32 • D 18N4 LXM 32 • D 30N4 LXM 32 • D 72N4		Встроенный вентилятор
Максимальная рабочая в	ысота		М	1000 м без ухудшения характеристик До 3000 м при следующих условиях: ■ Максимальная температура 50°C ■ Уменьшение тока серводвигателя на 1% на каждые дополнительные 100 м ■ Ограничение напряжения выше 2000 м
Рабочее положение Максимальный постоянный у к вертикальному положению	ол отклоне	ения по отношению		10° 10°
Характеристики г	ривод	a		
Частота коммутации			кГц	8

(1) Для уточнения допустимой длины кабеля см. таблицу на стр. 47.

 Функции:
 Каталожные номера:
 Размеры:
 Требования безопасности:

 стр. 12
 стр. 24
 стр. 52
 стр. 54

0					
Электрические характ	•				
Сетевое питание	Напряжение	В	110 - 15%120 + 10%, однофазі 200 - 15%240 + 10%, однофазі 380 - 15%480 + 10%, трехфазі	ное для LXM 32•••M2	
	Частота	Гц	50 - 5%60 + 5%		
	Переходное перенапряжение		Категория перенапряжения III, в с	соответствии с МЭК 61800-5-1	
	Пусковой ток	A	< 60		
	Ток утечки	мА	< 30		
Внешний источник питания 24 В	Входное напряжение	В	24 (-15 / +20%)		
(не входит в комплект поставки) (1)	Входной ток (без нагрузки)	Α	1		
	Пульсации		≤ 5%		
Сигнализация			1 красный светодиод: свечение с	игнализирует о наличии напряжен	ия на сервопреобразователе
Выходное напряжение			Трехфазное напряжение, не боле	е чем напряжение питающей сети	
Гальваническая развязка			Между силовыми цепями и цепям	ии управления (входы, выходы, цег	и питания)
Характеристики соеди	інительных кабелей				
Рекомендуемый тип кабеля для монтажа в шкафу			Одножильный кабель МЭК, темпе медь, 90°С, XLPE/EPR или медь, 7		
Характеристики подкл	ЮЧЕНИЯ (сетевое питание, то	омозной П	। резистор, клеммы сервод	вигателя)	
Клеммы сервопреобразователя			R/L1, S/L2, T/L3 (сетевое питание)	РА/+, РВІ, РВе (внешнее тормозное сопротивление)	U/T1, V/T2, W/T3 (серводвигатель)
Максимальное сечение проводн сетевого питания, внешнего торг серводвигателя	иков и момент затяжки для клемм мозного сопротивления и		5 мм² (AWG 10) 0.7 Н·м	3 мм² (AWG 12) 0.5 H-м	5 мм² (AWG 10) 0.7 Н-м См. характеристики кабелей W3 М5 10 ● R ● ● ● на стр. 76, 77 и 104, 105
Характеристики цепей	і управления				
Тип сервопреобразователя	, , , , , , , , , , , , , , , , , , ,		LXM 32C••••	LXM 32A••••	LXM 32M••••
Защита	Входы		От обратной полярности		
	Выходы		От коротких замыканий		
Логика входов/выходов 24 В			Положительная логика (вход Sink Настройки по умолчанию: положи	/выход Source) или отрицательная ительная логика.	логика (вход Source/выход Sink).
Дискретные входы					
Тип			Дискретные входы 24 В с поло	эжительной (Sink) или отрицательн	ой (Source) логикой
Количество			6, программируемые	3, программируемые	4, программируемые
Питание		В	24		
Время дискретизации		мс	0.25		
Противодребезговый фильтр		мс	Конфигурируется от 250 мкс до 1.	.5 мс с шагом 250 мкс	
Положительная логика (Sink)				д не подключен, состояние 1, если г стандарту МЭК/EN 61131-2, тип 1	
Отрицательная логика (Source)			Состояние 0, если > 19 В, или вхи	од не подключен, состояние 1, есл	u < 9 B
		(4) 14 1	•		D/ /

(1) Информация приведена в специализированном каталоге "Источники питания Phaseo и трансформаторы».

 Функции:
 Каталожные номера:
 Размеры:
 Требования безопасности:

 стр. 12
 стр. 24
 стр. 52
 стр. 54

	й управления (продолжен		13/44 000		13/14 0000		
Тип сервопреобразователя			LXM 32C••••• LXM 3	2A••••	LXM 32M••••		
Входы «захвата положения»	*						
ип			Входы «захвата положения» 24 В Могут использоваться как стандартные дискретные входы				
(оличество			- 1		2		
Іитание		В	 24				
Входы безопасности							
Тип			Входы для функции безопасности Safe To	que Off (STO)			
Количество			2 (STO_A, STO_B)				
Питание			 24				
ремя отклика		мс	≤5				
Положительная логика (Sink)			Состояние 0, если < 5 В, или вход не подк Дискретные входы соответствуют стандар				
Дискретные выходы							
'ип			Дискретные выходы === 24 B с положитель	ной (Source) или отр	оицательной (Sink) логикой		
оличество			5, программируемые 2, прог	раммируемые	3, программируемые		
апряжение на выходе		В	≤ 30, в соответствии со стандартом МЭК/	EN 61131-2			
ремя дискретизации		мкс	250				
аксимальный ток отключения		мА	50				
адение напряжения		В	1 (при нагрузке 50 мА)				
Аналоговые входы							
ип				Дифференциальные аналоговые входы ±10 В			
азрешение		бит	14	14			
оличество			2 (ANA 1+/ANA 1-, ANA 2+/ANA 2-)				
ходное сопротивление		кОм	≥20				
ремя дискретизации		мкс	250				
бсолютная погрешность			Менее ±0.5%				
Тинейность			Менее ±0.5%				
Сигналы импульса/направл	пения, A/B, CW/CCW						
ип			5 B, 24 B или интерфейс RS 422				
оличество			1 интерфейс для сигналов 5, 24 В или RS	422			
астота входного	Интерфейс RS 422	кГц	≤ 1000				
игнала	5 или 24 B (push-pull)	кГц	≤ 200				
	5 или 24 В (открытый коллектор)	кГц	≤ 10				
Лаксимальная длина кабеля	Интерфейс RS 422	м	100				
	5 или 24 B (push-pull)	М	10				
	5 или 24 В (открытый коллектор)	М	1	1			
Выходные сигналы ESIM (E	ncoder SIMulation) PTO						
ип			Интерфейс RS 422				
астота выходного сигнала		кГц	≤ 500				
Максимальная длина кабеля		М	100				
Сигналы обратной связи да	тчика серводвигателя						
апряжение	Питание энкодера	В	+ 10/100 mA				
	Входные сигналы SinCos	В	1 V _{ss} со смещением 2.5 B 0.5 V _{ss} при 100 кГц				
Входное сопротивление		Ом	120				
Характеристики подкл	пючения клемм цепей у	правлен	ия				
Клеммы сервопреобразовател	я		Входы безопасности Safe Torque Off (питание 24 В)		ные входы e 24 B)		

Функции:	Каталожные номера:	Размеры:	Требования безопасности:	
стр. 12	стр. 24	cm 52	cm 54	

Характеристики ф	рункциональной безопасности						
Защита	Механизма	Функция безопасности Safe Torque Off (STO), форсируют несанкционированный пуск серводвигателя, соответству и стандарту MЭК/EN 61800-5-2					
	Технологического процесса	Функция безопасности Safe Torque Off (STO), форсирующествиционированный пуск серводвигателя, соответству и стандарту MЭК/EN 61800-5-2					
Характеристики к	оммуникационных портов						
Протоколы CANopen и	CANmotion (сервопреобразователь L	XM 32A••••)					
Тип протокола		CANopen	CANmotion				
Структура	Соединители	Разъемы RJ45, обозначаемые CN4 или CN5					
	Тип сетевого устройства	Ведомое					
	Скорость передачи	Скорость передачи зависит от длины шины: ■ 50 кбит/с для шины длиной до 1000 м ■ 125 кбит/с для шины длиной до 500 м ■ 250 кбит/с для шины длиной до 250 м ■ 500 кбит/с для шины длиной до 100 м ■ 100 кбит/с для шины длиной до 4 м, где нет сегментов короче 0.3 м					
	Адрес (идентификатор узла)	От 1 до 247, конфигурируется при помощи терминала или ПО SoMove					
Сервисы	PDO (Process Data Objects)	Неявный обмен PDO: ■ 4 конфигурируемых PDO	Неявный обмен PDO: ■ 2 PDO в соответствии с DSP 402 (режим управления позиционированием)				
	Режимы PDO	Инициированный событием, инициированный временем, дистанционно запрашиваемый, синхронный (циклический), синхронный (ациклический)	Синхронный (циклический)				
	Количество SDO (Service Data Objects)	Явный обмен SDO: ■ 2 SDO на прием ■ 2 SDO на передачу	Явный обмен SDO: ■ 1 SDO на прием ■ 1 SDO на передачу				
	Аварийные сообщения	Да					
	Профиль	CiA 402: CANopen (Device Profile Drives and Motion Control) Режимы позиционирования и профиля скорости					
		Режимы управления позиционированием, управления скоростью, управления моментом и установки в исходное положение	Режим управления позиционированием				
	Контроль связи	Node guarding, heartbeat					
Диагностика	При помощи светодиодов	2 светодиода: RUN и ERROR на встроенном дисплее Отображение неисправностей Полная диагностика с помощью ПО SoMove					
Файл описания		Файлы конфигурации с расширением .eds для всего сем www.schneider-electric.ru. Файл содержит описание пара					
Протокол Modbus (все	е модели сервопреобразователей)						
Структура	Соединители	Разъемы RJ45 (обозначаемые CN7)					
	Физический интерфейс	Многоточечный двухпроводный RS 485					
	Режим передачи	RTU					
	Скорость передачи	Конфигурируется при помощи терминала или ПО SoMov 9600 бит/с, 19.2 или 38.4 кбит/с для последовательной					
	Поляризация	Без сопротивлений поляризации; сопротивления должн (например, на уровне ведущего устройства)	ы обеспечиваться схемой подключения				
	Количество сервопреобразователей	До 31 сервопреобразователя Lexium 32					
	Адрес	От 1 до 247, конфигурируется при помощи терминала или ПО SoMove					
Диагностика		Отображение неисправностей на встроенном дисплее					

Функции:	Каталожные номера:	Размеры:	Требования безопасности:
стр. 12	стр. 24	стр. 52	стр. 54

Выходной ток при 8 кГц		Номинальная мощность при 8 кГц	иощность (2)		Максимальный одидаемый ток КЗ	№ по каталогу	Macca
Длительный (действующее значение)	Переходный (действующее значение) (1)	_					
A	A	кВт	Α	Α	кА		КГ
Однофазное	напряжение п	итания: \sim 115 B,	50/60 Гц,	со встрое	нным фильтром ЭМ	C (3)	
1.5	3	0.15	2.9		1	LXM 32CU45M2	1.600
						LXM 32AU45M2	1.600
					LXM 32MU45M2	1.700	
3	6	0.3	5.4		1	LXM 32CU90M2	1.700
						LXM 32AU90M2	1.700
						LXM 32MU90M2	1.800
6	10	0.5	8.5		1	LXM 32CD18M2	1.800
						LXM 32AD18M2	1.800
						LXM 32MD18M2	1.900
10	15	0.8	12.9		1	LXM 32CD30M2	2.000
						LXM 32AD30M2	2.000
						LXM 32MD30M2	2.100

LXM 32A••••

Однофа	азное напряжен	ие питания: 🍑 🕰	30 В, 50/60 Гц, со вс	троенным фильтро	DM SINIC (3)	
1.5	4.5	0.3	2.9	1	LXM 32CU45M2	1.600
					LXM 32AU45M2	1.600
					LXM 32MU45M2	1.700
3	9	0.5	4.5	1	LXM 32CU90M2	1.700
					LXM 32AU90M2	1.700
				LXM 32MU90M2	1.800	
6	18	1	8.4	1	LXM 32CD18M2	1.800
					LXM 32AD18M2	1.800
					LXM 32MD18M2	1.900
10	30 1.6	12.7	1	LXM 32CD30M2	2.000	
					LXM 32AD30M2	2.000
					LXM 32MD30M2	2.100

⁽¹⁾ Максимальное значение в течение 3 секунд. (2) При применении с сетевым дросселем (см. стр. 49). (3) Дополнительный фильтр ЭМС доступен в качестве опции (см. стр. 47).

(продолжение)

IVM	2214	 	_

Выходной ток при 8 кГц		Номинальная Линейный ток мощность (2) при 8 кГц		Максимальный одидаемый ток КЗ	№ по каталогу	Macca		
Длительный (действующее значение)	гельный Переходный твующее (действующее							
A	A	кВт	Α	Α	кА		КГ	
Трехфазное	напряжение пи	итания: \sim 380 В,	50/60 Гц, с	о встрое	ным фильтром ЭМС	(3)		
1.5	6	0.4	1.4		5	LXM 32CU60N4	1.700	
						LXM 32AU60N4	1.700	
						LXM 32MU60N4	1.800	
3	12	0.9	3		5	LXM 32CD12N4	1.800	
						LXM 32AD12N4	1.800	
						LXM 32MD12N4	1.900	
3	18	1.8	5.5		5	LXM 32CD18N4	2.000	
						LXM 32AD18N4	2.000	
						LXM 32MD18N4	2.100	
10	30	3	8.7		5	LXM 32CD30N4	2.600	
						LXM 32AD30N4	2.600	
						LXM 32MD30N4	2.700	
24	72	7	18.1		5	LXM 32CD72N4	_	
						LXM 32AD72N4	-	
						LXM 32MD72N4	-	
Трехфазное		итания: \sim 480 В, $^{!}$	50/60 Гц, с	о встроен	ным фильтром ЭМС	(3)		
1.5	6	0.4	1.2		5	LXM 32CU60N4	1.700	
						LXM 32AU60N4	1.700	
						LXM 32MU60N4	1.800	
3	12	0.9	2.4		5	LXM 32CD12N4	1.800	
						LXM 32AD12N4	1.800	
						LXM 32MD12N4	1.900	
3	18	1.8	4.5		5	LXM 32CD18N4	2.000	
						LXM 32AD18N4	2.000	
						LXM 32MD18N4	2.100	
10	30	3	7		5	LXM 32CD30N4	2.600	
						LXM 32AD30N4	2.600	
						LXM 32MD30N4	2.700	
24	72	7	14.6		5	LXM 32CD72N4	-	
						LXM 32AD72N4		
						LXM 32MD72N4		

⁽¹⁾ Максимальное значение в течение 3 секунд. (2) При применении с сетевым дросселем (см. стр. 49). (3) Дополнительный фильтр ЭМС доступен в качестве опции (см. стр. 47).

Выносной графический терминал (заказывается отдельно) (1)

Сервопреобразователь Lexium 32 может подключаться к выносному графическому терминалу, используя принадлежности для удаленного подключения. Терминал может устанавливаться на двери шкафа, соответствуя степени защиты IP 54.

Используется единый терминал для различных типов преобразователей частоты и сервопреобразователей.

Терминал имеет графический дисплей и обеспечивает доступ к тем же функциям, что и встроенный интерфейс и клавиши управления на самом преобразователе, а также позволяет реализовать некоторые дополнительные функции. Например, выносной терминал может использоваться для:

- Удаленного конфигурирования, настройки и управления сервопреобразователем
- Удаленного отображения состояния и неисправностей сервопреобразователя
- Перепрограммирования входов/выходов
- Выполнения задаваемых перемещений
- Конфигурирования нагрузки

Выносной графический терминал имеет следующие основные характеристики:

- Графический дисплей 8 строк по 24 символа, читаемый текст
- Навигационная клавиша, обеспечивающая быстрый доступ к выпадающим меню
- Интерфейс на шести языках (китайский, английский, французский, немецкий, итальянский, испанский); есть возможность перезаписи других языков, в том числе и русского, с помощью мультизагрузчика WW3 A8 121

Максимальная рабочая температура терминала 60°С.

- 1 Графический дисплей:
 - 8 строк по 24 символа, 240 x 160 пикселей
- Отображение больших цифр
- Отображение индикаторных линеек
- 2 Функциональные клавиши
- 3 Клавиша **ESC**: отказ от значения, параметра или меню для возврата к предыдущему выбору
- 4 Клавиша FW/REV: при местном управлении изменение направления вращения двигателя
- 5 Навигационная клавиша:
 - Вращение ±: переход на следующую или предыдущую строку, увеличение или уменьшение значения
- Нажатие: coxpaнeние текущего значения (ENT)
- 6 Клавиши режима местного управления приводом:
 - RUN: команда пуска двигателя
 - STOP/RESET: команда остановки двигателя или сброса неисправности в режиме местного управления
- 7 Выносной графический терминал
- 8 Кабель для удаленного подключения
- 9 Адаптер RJ45, «гнездо/гнездо»

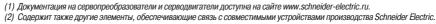
Описание	№ на рис.	Длина, м	№ по каталогу	Масса, кг
Выносной графический терминал Требуется соединительный кабель (W3 A1 104R●●) и адаптер RJ45 (W3 A1 105)	7	_	VW3 A1 101	_
Кабели для удаленного подключения,	8	1	VW3 A1 104R10	0.050
оснащенные двумя разъемами RJ45		3	VW3 A1 104R30	0.150
		5	VW3 A1 104R50	0.250
		10	VW3 A1 104R100	0.500
Адаптер RJ45, «гнездо/гнездо»	9	_	VW3 A1 105	0.010

(1) Может потребоваться обновление программного обеспечения терминала. Используется мультизагрузчик W3 A8 121. См. стр. 27.

Выносной графический терминал

кабель для удаленного подключения

адаптер RJ45, «гнездо/гнездо»


(продолжение)

Документация		
Описание	№ по каталогу	Масса, кг
DVD Description of the Motion & Drives offer (1), содержащий: ■ Техническую документацию (руководства по программированию, выбору, установке) ■ Программное обеспечение SoMove Lite ■ Каталоги, брошюры	VW3 A8 200	0.100
Краткое руководство на Lexium 32	Доступно на сайте www.schneider-electric.ru	_

Табличка с заводскими характеристиками						
Описание	Использование	Размеры, см	№ по каталогу	Масса, кг		
Заводская табличка (комплект поставки: 50 шт.)	Содержит информацию о сервопреобразователе. Крепится в верхней правой части сервопреобразователя	38.5 x 13	VW3 M2 501	_		

	■ Соединительный кабель1 x 0.1 м с 2 разъемами RJ45 (2)		
Адаптер USB/Bluetooth® для ПК	Необходим для ПК, не имеющего встроенного Bluetooth®. Подключается к USB порту ПК. Дальность действия 10 м, класс 2	VW3 A8 115	0.200
Мультизагрузчик			
Мультизагрузчик	Используется для загрузки конфигурации из ПК или сервопреобразователя и копирования ее в другой сервопреобразователь. Подавать питание на сервопреобразователь нет необходимости. В состав комплекта входят: ■ 1 соединительный кабель с двумя разъемами RJ45 ■ 1 соединительный кабель с одним USB-разъемом типа A и одним разъемом мини-USB ■ 1 карта памяти SD 2 Гб ■ 1 адаптер RJ 45, «гнездо/гнездо» ■ 4 батарейки типа AA 1.5 В LR6	WW3 A8 121	_
Карта памяти			
Карта памяти	Используется для сохранения параметров сервопреобразователя Lexium 32. Другой сервопреобразователь Lexium 32 может быть введен в работу немедленно, если первый выводится в ремонт или имеет те же функции.	VW3 M8 705	_
Упаковка из 25 карт памяти	-	VW3 M8 704	_
Запоминающее устройство	Записывает данные с сервопреобразователя Lexium 32 на карту памяти. Записывающее устройство не поставляется Schneider Electric.	См. Руководство по эксплуатации	_

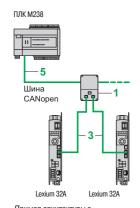
го одержит также другие олешенти, осоене иниающие связы в совинестиныния устроистывани производетва осинског шесте

Программное обеспечение SoMove

Адаптер USB Bluetooth VW3 A8 115

Мультизагрузчик VW3 A8 121

Карта памяти VW3 M8 705


Взаимозаменяемые разъемы					
Описание	Назначение	Описание		№ по каталогу	Масса, кг
Набор разъемов	Lexium 32C	Содержит: 3 разъема сетевого питания 1 разъем шины постоянного тока 3 разъема входов/выходов 1 разъем питания двигателя 1 разъем удерживающего тормоза		VW3 M2 201	_
	Lexium 32A	Содержит: ■ 3 разъема сетевого питания ■ 1 разъем шины постоянного тока ■ 2 разъема входов/выходов ■ 1 разъем питания двигателя ■ 1 разъем удерживающего тормоза		VW3 M2 202	-
	Lexium 32M	Содержит: 3 разъема сетевого питания 1 разъем шины постоянного тока 3 разъема входов/выходов 1 разъем питания двигателя 1 разъем удерживающего тормоза		VW3 M2 203	
	Lexium 32 (все типы)	Содержит: ■ 10 разъемов для создания подключений к шине постоянного тока		VW3 M2 207	-
Соединительные разъемы					
Назначение		Описание	Длина, м	№ по каталогу	Масса, кг
Последовательное подключение (daisy chain) к шине постоянного тока между двумя сервопреобразователями Lexium 32		Оснащены двумя разъемами для сервопреобразователей Lexium 32 (комплект поставки: 5 шт.)	0.1	VW3 M7 101R01	-
Последовательное подключение (daisy chain)		Оснащены двумя разъемами	0.3	VW3 M8 502R03	0.02
или импульсное управление		типа RJ45	1.5	VW3 M8 502R15	0.06
для сервопреобразователей Lexium 32С и 32М		Оснащены одним разъемом типа RJ45, второй конец свободный	3	VW3 M8 223R30	-
Адаптер для кабеля датчика положения ротора серводвигателя (замена сервопреобразователя Lexium 05 на сервопреобразователь Lexium 32)		Оснащены одним 10-контактным разъемом Molex и одним разъемом RJ45 (к сервопреобразователю Lexium 32) Длина кабеля 1 м	-	VW3 M8 111R10	-
Адаптер для кабеля датчика положения ротора серводвигателя (замена сервопреобразователя Lexium 15 на сервопреобразователь Lexium 32)		Оснащены одним 15-контактным штыревым разъемом SUB-D и одним разъемом RJ45 (к сервопреобразователю Lexium 32) Длина кабеля 1 м	-	VW3 M8 112R10	-

Характеристики: стр. 20

Размеры: стр. 52

Требования безопасности: стр. 54

Пример архитектуры с управлением от ПЛК М238

Протоколы CANopen и CANmotion для сервопреобразователей Lexium 32A

Сервопреобразователи Lexium 32A могут подключаться к интерфейсу, использующему протокол CANopen, напрямую, используя разъемы RJ45. Для упрощения последовательного (daisy chain) соединения, каждый сервопреобразователь оснащен двумя разъемами такого типа (обозначаемые CN4 и CN5).

Коммуникационные возможности позволяют обеспечить доступ к функциям конфигурирования, настройки, управления и контроля параметров сервопреобразователя.

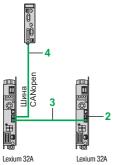
При использовании контроллера перемещения Lexium Controller, может использоваться шина CANmotion для управления не более 8 сервопреобразователями Lexium 32A.

Принадлежности для подк	лючения (1)			
Описание	Назначение	№ на рис.	№ по каталогу	Масса, кг
Разветвительная коробка CANopen IP 20 2 порта RJ45	Отвод линейного кабеля с разъемами RJ45	1	VW3 CAN TAP2	0.480
Терминатор линии 120 Ом (оснащен одним разъемом RJ45)	Подключение к разъему RJ45	2	TCS CAR 013M120	0.009

Соединительные кабели (1)						
Описание	Назначение		№ на рис.	Длина,	№ по каталогу	Macca,
	От	K		М		КГ
Кабели CANopen (1)	Разветвительной Сервопреобразователю	3	0.3	VW3 CAN CARR03	0.320	
с 2 разъемами RJ45	коробки WW3 CAN TAP2 Сервопреобразователя LXM 32A (разъемы CN4 и CN5)	LXM 32A (разъемы CN4 и CN5)		1	VW3 CAN CARR1	0.500
Кабели CANopen (1)	ПЛК Twido	Сервопреобразователю	4	1	VW3 M3 805R010	_
с одним 9-контактным гнездовым разъемом SUB-D со встроенным герминатором линии и одним разъемом RJ45	Контроллера перемещения Lexium LMC 20, LMC 20A130●	LXM 32A (разъемы CN4 и CN5)		3	VW3 M3 805R030	_
Кабели САМореп (1)	ПЛК	Разветвительной коробке 5	5	50	TSX CAN CA 50	4.930
Стандартные кабели, маркировка СЄ Огнеустойчивый кабель с низким		VW3 CAN TAP2		100	TSX CAN CA 100	8.800
от неустоичивый касель с ниский выделением дыма и галогенов при горении (МЭК 60332-1)				300	TSX CAN CA 300	24.560
Кабели САПореп (1)	ПЛК	Разветвительной коробке	5	50	TSX CAN CB 50	3.580
Сертифицированы по UL , маркировка С Є		W/3 CAN TAP		100	TSX CAN CB 100	7.840
маркировка СС Огнеустойчивые (МЭК 60332-2)				300	TSX CAN CB 300	21.870
Кабели САПореп (1)	ПЛК	Разветвительной коробке	5	50	TSX CAN CD 50	3.510
Кабель для эксплуатации в тяжелых		WW3 CAN TAP		100	TSX CAN CD 100	7 770

TSX CAN CD 100 7.770 100 условиях (2) или в передвижных 300 TSX CAN CD 300 21.700 электроустановках, маркировка С€ Огнеустойчивый кабель с низким выделением дыма и галогенов при горении (МЭК 60332-1)

(1) Другие принадлежности для подключения к шине CANopen приведены в каталоге "Machines & installations with CANopen". (2) Тяжелые условия эксплуатации:


- Стойкость к углеводородам, промышленным маслам, моющим средствам, брызгам припоя
- Относительная влажность до 100%
- Соляной туман
- Значительные перепады температуры Диапазон рабочей температуры от 10 до + 70 °C

ПЛК Twido + TWD NC01M

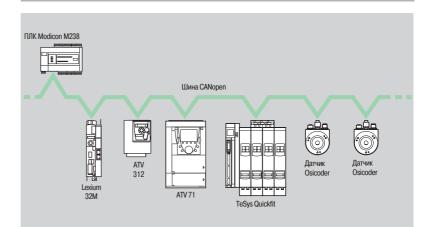
0				
		H	-4	
	Шина	CANopen	3	1 2
Levium	32	Δ		Lexium 32A

Пример архитектуры с управлением от ПЛК Twido

Lexium Controlle LMC 20 или LMC 20A130

Пример архитектуры с управлением от контроллера перемещения LMC Lexium Controller

Коммуникационные шины и сети Шина CANopen


Описание

Сервопреобразователь Lexium 32A в базовой комплектации может подключаться к шине CANopen (см. характеристики на стр. 23).

Если в сервопреобразователь добавлена одна из доступных в качестве дополнительного оборудования коммуникационных карт, Lexium 32M может быть подключен к другим коммуникационным шинам и сетям:

- CANopen и CANmotion
- DeviceNet
- PROFIBUS DP V1
- Ethernet/IP

Промышленные шины CANopen и CANmotion

Промышленная шина CANopen представляет собой протокол для распределенных промышленных автоматизированных систем на базе CAN. Она согласуется со стандартом ISO 11898. Благодаря стандартизированным профилям связи промышленная шина CANopen обеспечивает открытость и способность к взаимодействию с различными устройствами (приводы, пускатели, датчики с цифровой обработкой сигналов и т.д.).

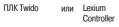
Промышленная шина CANopen является многоабонентской шиной, которая обеспечивает безопасный распределенный доступ к данным устройств системы автоматизации в режиме реального времени.

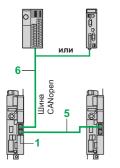
Протокол CSMA/CA основывается на циркулярном обмене, осуществляемом циклически или по запросу, что обеспечивает оптимальное использование пропускной способности шины. Канал передачи сообщений также используется для конфигурирования ведомых устройств.

Решение по объединению устройств на шине CANopen уменьшает расходы и оптимизирует архитектуру системы управления, благодаря:

- Уменьшению времени подключения
- Большей надежности механизма
- Гибкости при необходимости добавления или удаления устройств

Одна коммуникационная карта обеспечивает доступ к промышленной шине CANopen или CANmotion.


Дополнительное оборудование (продолжение)


Сервопреобразователи Lexium 32 Коммуникационные шины и сети Шина CANopen

Тип протокола		CANopen CANmotion				
Структура	Соединители	Два разъема RJ45 или один 9-контактный штыревой разъем SUB-D				
	Тип устройства в сети	Ведомое				
	Скорость передачи	Скорость передачи зависит от длины шины: ■ 50 кбит/с для шины длиной до 1000 м ■ 125 кбит/с для шины длиной до 500 м ■ 250 кбит/с для шины длиной до 250 м ■ 500 кбит/с для шины длиной до 100 м ■ 1 Мбит/с для шины длиной до 4 м, где нет сегментов	короче 0.3 м			
	Адрес (идентификатор узла)	От 1 до 127, конфигурируется с помощью терминала или	η ΠΟ SoMove			
Сервисы	PDO (Process Data Objects)	Неявный обмен PDO: ■ 4 конфигурируемых отображения PDO	Неявный обмен PDO: ■ 2 PDO согласно режимам DSP 402 (режим позиционирования и профиля скорости)			
	Режимы PDO	Инициированный событием, инициированный временем, дистанционно запрашиваемый, синхронный (циклический), синхронный (ациклический)	Синхронный (циклический)			
	Количество SDO (Service Data Objects)	Явный обмен SDO: ■ 2 SDO на прием ■ 2 SDO на передачу ■ 1 SDO на передачу				
	Аварийные сообщения	Да				
	Профиль устройства	Профиль CiA 402: CANopen (Device Profile Drives and Motion Control) Режимы позиционирования и профиля скорости				
		Режимы управления позиционированием, управления скоростью, управления моментом и установки в исходное положение	Режим управления позиционированием			
	Контроль связи	Node guarding, heartbeat				
Диагностика	С помощью светодиодов	2 светодиода: RUN и ERROR на встроенном дисплее				
	С помощью дисплея графического терминала	Отображение неисправностей Полная диагностика с помощью ПО SoMove				
Файл описания		Файлы конфигурации с расширением .eds для всего сем www.schneider-electric.ru. Файл содержит описание пара				

Сервопреобразователи Lexium 32 Коммуникационные шины и сети

Шина CANopen

Lexium 32 Lexium 32 Пример подключения Lexium 32M при помощи карты WW3 A3 608

Каталожные номера				
Принадлежности для по	дключения к промышленны	ым шинам <mark>CAN</mark> o	pen/CANmotion	
Коммуникационные карты				
Описание	Тип порта	№ на рис.	№ по каталогу	Масса, кг
Карты CANopen/CANmotion для сервопреобразователя Lexium 32M	Два разъема RJ45	1	VW3 A3 608	_
	Один 9-контактный штыревой разъем SUB-D	2	VW3 A3 618	=

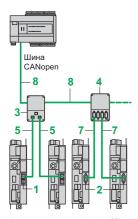
Принадлежности для подключен	ия			
Описание	Тип порта	№ на рис.	№ по каталогу	Macca, кг
Разветвительная	Два порта RJ45	3	VW3 CAN TAP2	0.480
коробка CANopen IP 20 (1)	Четыре порта SUB-D Терминатор линии	4	TSX CAN TDM4	0.196
Терминатор линии				
С разъемом RJ45	_	_	TCS CAR 013M120	0.009
С подготовленными проводниками	-	-	TCS CAR 01NM120	_
Разъемы IP20 CANopen (1) 9-контактный гнездовой разъем SUB-D Выключатель терминатора линии				
Прямой	=	_	TSX CAN KCDF180T	0.049
Угловой 90°	_	_	TSX CAN KCDF90T	0.046
Угловой 90° с 9-контактным разъемом SUB-D для подключения ПК или устоойства диагностики	-	_	TSX CAN KCDF90TP	0.051

0		
	или	
Шина CANopen	- 7 4	
7	0000 7 7	
Lexium	32	Lexium 32

Lexium Controller

ПЛК Twido

Пример подключения Lexium 32M
при помощи карты VW3 A3 618


устроиства диагностики						
Соединительные кабели (1)						
Описание	Назначение		№ на рис.	Длина,	№ по каталогу	Macca,
	От	K		М		КГ
Кабель CANopen с одним разъемом RJ45		Карте W3 A3 608	5	0.3	VW3 CAN CARRO3	0.320
на каждом конце		Преобразователю LXM 32A		1	VW3 CAN CARR1	0.500
Кабель CANopen (1)	ПЛК Twido Контроллера перемещения Lexium LMC 20, LMC 20A130	Карте W3 A3 608 Преобразователю LXM 32A	6	1	VW3 M3 805R010	-
с одним 9-контактным гнездовым разъемом SUB-D со встроенным терминатором линии и одним разъемом RJ45				3	VW3 M3 805R030	-
Кабель CANopen IP 20 с одним одним	Контроллера перемещения Lexium LMC 20, LMC 20A130 Разветвительной коробки TSX CAN TDM4	Карте W3 A3 618 Разветвительной коробке TSX CAN TDM4	7	0.3	TSX CAN CADD 03	0.091
9-контактным гнездовым разъемом SUB-D на каждом конце.				1	TSX CAN CADD 1	0.143
та каждом конце. Стандартные кабели, маркировка СЕ				3	TSX CAN CADD 3	0.295
Огнеустойчивый кабель с низким выделением дыма и галогенов (МЭК 60332-1)				5	TSX CAN CADD 5	0.440
Кабель CANopen IP 20 с одним	Контроллера	Карте W3 A3 618 Разветвительной коробке TSX CAN TDM4	7	0.3	TSX CAN CBDD 03	0.086
9-контактным гнездовым разъемом SUB-D на	перемещения Lexium LMC 20, LMC 20A130 Разветвительной			1	TSX CAN CBDD 1	0.131
каждом конце. Стандартные кабели, сертифицированы по				3	TSX CAN CBDD 3	0.268
UL, маркировка С€ Огнеустойчивый (МЭК 60332-2)	коробки TSX CAN TDM4			5	TSX CAN CBDD 5	0.400

⁽¹⁾ Подробная информация о принадлежностях для подключения к промышленной шине CANopen приведена в каталогах "Платформа автоматизации Modicon M340" и "Machines & installations with CANopen"

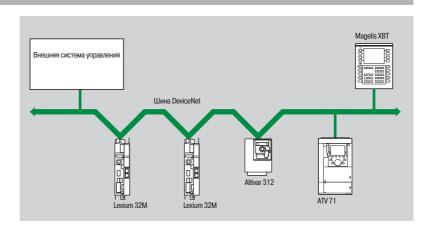
Сервопреобразователи Lexium 32 Коммуникационные шины и сети

Шина CANopen

ПЛК М238

Пример подключения Lexium 32M при помощи карт WW3 A3 608 и WW3 A3 618

Принадлежности для под	ключения к про	мышленным шина	м САІ	Nopen/C	ANmotion	
Соединительные кабели (1)				ropon, c		
Описание	Назначение		№ на рис.	Длина,	№ по каталогу	Масса,
	От	К	_	М		КГ
Кабели CANopen (1)	Разъема	Разъему	8	50	TSX CAN CA 50	4.930
Стандартные кабели, маркировка С€	TSX CAN KCDF90T	TSX CAN KCDF90T M238 ПЛК		100	TSX CAN CA 100	8.800
Огнеустойчивый кабель с низким ПЛК М238 М238 ПЛ выделением дыма и галогенов МЭК 60332-1)	MIZOOTIJIK		300	TSX CAN CA 300	24.560	
Кабели CANopen (1)	Разъема Разъему		8	50	TSX CAN CB 50	3.580
Стандартные кабели, сертифицированы по UL, маркировка СЄ	TSX CAN KCDF90T	TSX CAN KCDF90Tr		100	TSX CAN CB 100	7.840
ю от, маркировка СС Огнеустойчивый (МЭК 60332-2)	ПЛК M238 Разветвительной коробке W3 CAN TAP2 Разветвительной коробке TSX CAN TDM4		300	TSX CAN CB 300	21.870	
Кабели CANopen (1)	Разъема	Разъему	8	50	TSX CAN CD 50	3.510
Кабель для эксплуатации в тяжелых условиях (2) или в передвижных	TSX CAN KCDF90T ПЛК M238	TSX CAN KCDF90T		100	TSX CAN CD 100	7.770
условиях (2) или в передвижных элеторустановках, маркировка С € Огнеустойчивый кабель с низким выделением дыма и галогенов (МЭК 60332-1)	ος ΣΙΝΙ Λιατ	Разветвительной коробке WW3 CAN TAP2 Разветвительной коробке TSX CAN TDM4		300	TSX CAN CD 300	21.700


- (1) Другие принадлежности для подключения к шине CANopen приведены в каталоге "Machines & installations with CANopen". (2) Тяжелые условия эксплуатации:
- - Стойкость к углеводородам, промышленным маслам, моющим средствам, брызгам припоя
 - Относительная влажность до 100%
 - Соляной туман

 - Значительные перепады температуры Диапазон рабочей температуры от 10 до + 70 $^{\circ}$ С

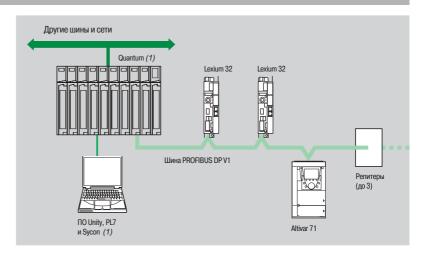
Коммуникационные шины и сети Шина DeviceNet

Шина DeviceNet

Описание

Шина DeviceNet представляет собой систему низкого уровня, которая используется для удаленного управления большим количеством устройств. DeviceNet базируется на CAN-технологиях (OSI уровень 1 и 2).

Система может быть сконфигурирована как "ведущий-ведомый". DeviceNet поддерживает обмен данными с несколькими иерархическими уровнями системы с приоритетом передачи сообщений в зависимости от конфигурации. Физически соединение выполняется с помощью двух экранированных витых пар, по которым можно соединить до 63 ведомых устройств. Каждому ведомому устройству определяется свой адрес. В конце шины должны устанавливаться терминаторы линии.


Благодаря возможности подключения к шине DeviceNet, сервопривод Lexium 32M имеет возможность стандартизации решений для управления перемещением, сохранив при этом независимость от системы управления механизмом.

Структура	Соединители	Один съемный соединитель с монтажом под винт, 5 контактов с шагом 5.08					
	Скорость передачи	125, 250 или 500 кбит/с, конфигурируется с г	помощью графического терминала				
	Максимальная длина кабеля	100 м при скорости передачи 500 кбит/с, 500	м при 125 кбит/с				
	Адресация	От 1 до 63, конфигурируется с помощью грас	рического терминала или ПО SoMove				
Сервисы	Данные ввода/вывода	 ■ Стандартные сборки: Выходная сборка 101, входная сборка 111 ■ Расширенные сборки: Выходная сборка 102, входная сборка 112 ■ Сборки управления перемещением: Выходная сборка 100, входная сборка 110 					
	Режим периодических обменов	Входы: Polled, Change of state, Cyclic Выходы: Polled					
	Профили устройства	Профиль CIP Профили, совместимые с библиотеками PLCopen					
	Автоматическая замена оборудования	Да					
	Контроль связи	Время тайм-аута (может быть запрещено) мо	ожет устанавливаться с помощью конфигуратора и	шины DeviceNet			
Диагностика	С помощью светодиодов	2 светодиода на карте: MS (Module Status - с и NS (Network Status - состояние соединения					
	С помощью дисплея графического терминала	Принятое слово управления Принятое задание					
Файл описания		Файлы конфигурации с расширением .eds дл www.schneider-electric.ru. Файл содержит оп	я всего семейства сервопреобразователей достуг исание параметров сервопреобразователя	пны на сайте			
Каталожные номера	<u></u>						
Описание	Назначение	Тип порта	№ по каталогу	Масса, кг			
Коммуникационная карта DeviceNet	Сервопреобразователь Lexium 32М	1 съемный винтовой клеммник	VW3 M3 301	-			

Коммуникационные шины и сети Шина PROFIBUS DP V1

Шина PROFIBUS DP V1

Описание

Промышленная шина PROFIBUS DP соответствует требованиям организации связи в промышленных

Шина PROFIBUS DP представляет собой шину с линейной топологией с процедурой централизованного доступа "ведущий/ведомый".

Физически соединения выполняются одной экранированной витой парой. Также при построении структуры системы "звезда" или "кольцо" возможно использование оптоволоконных кабелей.

Сервопреобразователь Lexium 32M может подключаться к шине PROFIBUS DP V1 при помощи коммуникационной карты W3 A3 607.

К шине PROFIBUS DP могут подключаться и другие устройства, такие как ПЛК (1), модули ввода/ вывода Advantys STB (2), преобразователи частоты Altivar (3), датчики Osicoder (4) и т.д.

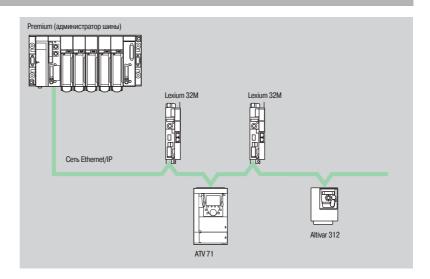
Структура	Соединитель	Один 9-контактный гнездовой разъем типа SUB-D					
	Скорость передачи	9.6, 19.2 и 93.75 кбит/с для шины длиной 187.5 кбит/с для шины длиной 1000 м 500 кбит/с для шины длиной 400 м 1.5 Мбит/с для шины длиной 200 м 3, 6 и 12 Мбит/с для шины длиной 100 м	1200 м				
	Адресация	От 1 до 126, конфигурируется с помощью	графического терминала или ПО SoMove				
Прикладной уровень	Данные ввода/вывода	В зависимости от прикладного уровня					
	Обмен сообщениями	Ациклический обмен сообщениями DPV1					
Диагностика	С помощью светодиодов	2 светодиода на карте: ST (состояние) и DX (обмен данными)					
	С помощью дисплея графического терминала	Отображение неисправностей Полная диагностика с помощью ПО SoMov	е				
Файл описания			для всего семейства сервопреобразователей до описание параметров сервопреобразователя	оступны на сайте			
Каталожный номер							
Описание	Назначение	Тип порта	№ по каталогу	Масса, кг			
Коммуникационная кар	та						
Карта PROFIBUS DP V1	Сервопреобразователь	Один 9- контактный гнездовой	VW3 A3 607	0.14			

⁽¹⁾ Подробная информация приведена в каталоге "Automation platform Modicon Quantum and Unity software" (Платформа автоматизации Modicon "Quantum и ПО Unity").

разъем SUB-D

Lexium 32M

⁽²⁾ Подробная информация приведена в каталоге "Human-Machine interfaces" ("Человеко-машинный интерфейс").


⁽⁴⁾ Подробная информация приведена в каталоге "Soft starters and variable speed drives" ("Преобразователи частоты и устройства плавного пуска").

(4) Подробная информация приведена в каталоге "Global Detection" ("Датчики").

Коммуникационные шины и сети Сеть Ethernet/IP

Сеть Ethernet/IP

Описание

Ethernet/IP представляет собой промышленный протокол прикладного уровня (по OSI), специально разработанный для применения в промышленности.

Основываясь на уровне CIP (Control & Information Protocol), он использует развитые протоколы Ethernet: TCP (Transport Control Protocol - протокол управления передачей) и IP (Internet Protocol). В результате предлагается прозрачная система обмена данными, подключаемая к сети компании. Архитектура сети может быть различной.

Благодаря высокой скорости характеристики сети более не ограничиваются характеристиками собственно устройства. Ethernet/IP, имеющий несомненные преимущества открытый протокол, поддерживает все типы связи:

- Веб страницы
- Пересылку файлов
- Обмен сообщениями

Характеристики ка	рты Ethernet/IP VW3 A3 6	616
Структура	Соединитель	Два разьема RJ45
	Скорость передачи	10/100 Мбит/с, полудуплекс и полный дуплекс, выбор вручную или автоматическое согласование
	Адресация	Назначается вручную через графический терминал или ПО SoMove ВООТР DHCP
	Физическая среда	IEEE 802.3
	Уровень соответствия	Промышленный
	Связной уровень	LLC: IEEE 802.2 MAC: IEEE 802.3 Автоматическое переключение
	Сетевой уровень	IP (RFC791) ICMP-клиент для поддержки некоторых IP-сервисов, таких, как команда ping
	Транспортный уровень	TCP (RFC793), UDP Максимальное количество подключений 8 (порт 502)

Сервопреобразователи Lexium 32 Коммуникационные шины и сети

Сеть Ethernet/IP

Характеристики		, , , ,								
Сервисы	Доступные сообщения CIP	Разрешает доступ ко всем	и параметрам привода							
	Web-сервер		прованный производителем, ий размер памяти приблизи		й					
		Сконфигурированный и настроенный производителем серевер содержит следующие страницы: Drive monitor: отображение состояния привода и его входов/выходов, основные измеренные параметры (скорость, ток и т.д.) Drive parameters: доступ к параметрам привода для конфигурирования, настройки и сигнализации Drive recorder: функция простого осциллографа Security: установка пароля для доступа к параметрам чтения и изменения конфигурации Ethernet/IP setup: конфигурирование параметров Ethernet, TCP/IP и CIP Ethernet statistics: идентификация привода (IP-адрес, версия и т.д.), отображение количества пересылок и Ethernet Message statistics: визуализация счетчиков TCP/IP и CIP E-mail: конфигурирование функции электронной почты								
	E-mail	Е-mail, передаваемый по событию, неисправности или после сброса неисправности								
	Профиль устройства	Групповой								
	Управление сетью	SNMP								
	Пересылка файлов	FTP для Web-сервера	FTP для Web-сервера							
1 иагностика	С помощью светодиодов		5 светодиодов на карте: MS (Module Status), NS (Network Status), Link (Link Status), TX/RX (Transmit/Receive port 1 и Transmit/Receive port 2)							
		Поличения операции	140							
	С помощью дисплея графического терминала	Принятое слово управлен Принятое задание Количество некорректных								
		Принятое задание Количество некорректных	с блоков информации	thernet statistics, M	lessage statistics и Net IO mo	nitoring				
Каталожные ном	терминала С помощью Web-сервера	Принятое задание Количество некорректных	с блоков информации	thernet statistics, M	fessage statistics и Net IO mo	nitoring				
	терминала С помощью Web-сервера	Принятое задание Количество некорректных С помощью страниц Drive	с блоков информации	hernet statistics, N	flessage statistics и Net IO mo	nitoring				
	терминала С помощью Web-сервера	Принятое задание Количество некорректных С помощью страниц Drive	с блоков информации	thernet statistics, М Длина, м (1)	fessage statistics и Net IO mo Ne по каталогу	nitoring Macca, kr				
Принадлежности	терминала С помощью Web-сервера ера для подключения к сети Ethe	Принятое задание Количество некорректных С помощью страниц Drive	сблоков информации monitor, Drive parameters, E	Длина,		Macca,				
Принадлежности Описание	терминала С помощью Web-сервера ера для подключения к сети Ethe	Принятое задание Количество некорректных С помощью страниц Drive	сблоков информации monitor, Drive parameters, E	Длина,		Macca,				
Принадлежности Описание Коммуникационная к Карта Ethernet/IP Кабели ConneXium	терминала С помощью Web-сервера ера для подключения к сети Ethe	Принятое задание Количество некорректных С помощью страниц Drive егпет/IP Назначение Сервопреобразователь Lexium 32M	к блоков информации monitor, Drive parameters, E Тип порта Два разъема RJ45	Длина,	№ по каталогу	Масса, кг				
Принадлежности Описание Коммуникационная к Карта Ethernet/IP Кабели ConneXium	терминала С помощью Web-сервера ера для подключения к сети Ethe сарта сандартом EIA/TIA-568, категория 5	Принятое задание Количество некорректных С помощью страниц Drive егпет/IP Назначение Сервопреобразователь Lexium 32M	к блоков информации monitor, Drive parameters, E Тип порта Два разъема RJ45	Длина,	№ по каталогу	Масса, кг				
Принадлежности Описание Коммуникационная к Карта Ethernet/IP Кабели ConneXium (в соответствии со ст	терминала С помощью Web-сервера ера для подключения к сети Ethe сарта сандартом EIA/TIA-568, категория 5	Принятое задание Количество некорректных С помощью страниц Drive егпет/IP Назначение Сервопреобразователь Lexium 32M	к блоков информации monitor, Drive parameters, E Тип порта Два разъема RJ45 класс D)	Длина, м (1)	№ по каталогу VW3 A3 616	Масса, кг				
Принадлежности Описание Коммуникационная к Карта Ethernet/IP Кабели ConneXium (в соответствии со ст	терминала С помощью Web-сервера ера для подключения к сети Ethe сарта сандартом EIA/TIA-568, категория 5	Принятое задание Количество некорректных С помощью страниц Drive егпет/IP Назначение Сервопреобразователь Lexium 32M	к блоков информации monitor, Drive parameters, E Тип порта Два разъема RJ45 класс D)	Длина, м (1)	№ по каталогу VW3 A3 616 490 NTW 000 02	Масса, кг				
Принадлежности Описание Коммуникационная к Карта Ethernet/IP Кабели ConneXium (в соответствии со ст	терминала С помощью Web-сервера ера для подключения к сети Ethe сарта тандартом EIA/TIA-568, категория 5 г	Принятое задание Количество некорректных С помощью страниц Drive егпет/IP Назначение Сервопреобразователь Lexium 32M	к блоков информации monitor, Drive parameters, E Тип порта Два разъема RJ45 класс D)	Длина, м (1) — 2 5	Nº по каталогу VW3 A3 616 490 NTW 000 02 490 NTW 000 05	Масса, кг				
Принадлежности Описание Коммуникационная к Карта Ethernet/IP Кабели ConneXium (в соответствии со ст Прямая экранированная	терминала С помощью Web-сервера ера для подключения к сети Ethe сарта тандартом EIA/TIA-568, категория 5 г	Принятое задание Количество некорректных С помощью страниц Drive егпет/IP Назначение Сервопреобразователь Lexium 32M и МЭК 1180/EN 50173, п Карта Ethernet/IP	к блоков информации monitor, Drive parameters, E Тип порта Два разъема RJ45 класс D) Два разъема RJ45	Длина, м (1) — 2 5 12	№ по каталогу VW3 A3 616 490 NTW 000 02 490 NTW 000 05 490 NTW 000 12	Масса, кг				
Принадлежности Описание Коммуникационная к Карта Ethernet/IP Кабели ConneXium (в соответствии со ст Прямая экранированная	терминала С помощью Web-сервера ера для подключения к сети Ethe сарта тандартом EIA/TIA-568, категория 5 г	Принятое задание Количество некорректных С помощью страниц Drive егпет/IP Назначение Сервопреобразователь Lexium 32M и МЭК 1180/EN 50173, и Карта Ethernet/IP	к блоков информации monitor, Drive parameters, E Тип порта Два разъема RJ45 класс D) Два разъема RJ45	Длина, м (1) - 2 5 12	Nº 100 KATAJORY VW3 A3 616 490 NTW 000 02 490 NTW 000 05 490 NTW 000 12 490 NTC 000 05	Масса, кг				
Принадлежности Описание Коммуникационная к Карта Ethernet/IP Кабели ConneXium (в соответствии со ст Прямая экранированная Перекрестная экраниров	терминала С помощью Web-сервера ера для подключения к сети Ethe зарта тандартом EIA/TIA-568, категория 5 г витая пара	Принятое задание Количество некорректных С помощью страниц Drive егпет/IP Назначение Сервопреобразователь Lexium 32M и МЭК 1180/EN 50173, и Карта Ethernet/IP	к блоков информации monitor, Drive parameters, E Тип порта Два разъема RJ45 класс D) Два разъема RJ45	Длина, м (1) - 2 5 12 5 15	Nº 100 KATAJORY VW3 A3 616 490 NTW 000 02 490 NTW 000 05 490 NTW 000 12 490 NTC 000 05	Масса, кг				
Принадлежности Описание Коммуникационная к Карта Ethernet/IP Кабели ConneXium (в соответствии со ст Прямая экранированная Перекрестная экраниров	терминала С помощью Web-сервера ера для подключения к сети Ethe зарта тандартом EIA/TIA-568, категория 5 г витая пара	Принятое задание Количество некорректных С помощью страниц Drive егпет/IP Назначение Сервопреобразователь Lexium 32M и МЭК 1180/EN 50173, и Карта Ethernet/IP Карта Ethernet/IP	к блоков информации monitor, Drive parameters, E Тип порта Два разъема RJ45 класс D) Два разъема RJ45 Два разъема RJ45	Длина, м (1) - 2 5 12 5 15	Nº 100 KATAJORY VW3 A3 616 490 NTW 000 02 490 NTW 000 05 490 NTW 000 12 490 NTC 000 05 490 NTC 000 15	Масса,				
Принадлежности Описание Коммуникационная к Карта Ethernet/IP Кабели ConneXium (в соответствии со ст Прямая экранированная	терминала С помощью Web-сервера ера для подключения к сети Ethe зарта тандартом EIA/TIA-568, категория 5 г витая пара	Принятое задание Количество некорректных С помощью страниц Drive егпет/IP Назначение Сервопреобразователь Lexium 32M и МЭК 1180/EN 50173, и Карта Ethernet/IP Карта Ethernet/IP	к блоков информации monitor, Drive parameters, E Тип порта Два разъема RJ45 класс D) Два разъема RJ45 Два разъема RJ45	Длина, м (1) - 2 5 12 5 15	№ 100 KATAJORY VW3 A3 616 490 NTW 000 02 490 NTW 000 05 490 NTC 000 05 490 NTC 000 15 490 NTC 000 02U	Масса, кг				
Принадлежности Описание Коммуникационная к Карта Ethernet/IP Кабели ConneXium (в соответствии со ст Прямая экранированная Перекрестная экраниров	терминала С помощью Web-сервера ера для подключения к сети Ethe зарта гандартом EIA/TIA-568, категория 5 г витая пара соответствии со стандартами UL и витая пара	Принятое задание Количество некорректных С помощью страниц Drive егпет/IP Назначение Сервопреобразователь Lexium 32M и МЭК 1180/EN 50173, и Карта Ethernet/IP Карта Ethernet/IP	к блоков информации monitor, Drive parameters, E Тип порта Два разъема RJ45 класс D) Два разъема RJ45 Два разъема RJ45	Длина, м (1) - 2 5 12 5 15	№ 100 КАТАЛОГУ WW3 A3 616 490 NTW 000 02 490 NTW 000 05 490 NTC 000 05 490 NTC 000 15 490 NTW 000 02U 490 NTW 000 05U	Масса,				

⁽¹⁾ Также выпускается длиной 40 и 80 м.

Для заказа других принадлежностей для подключения к сети Ethernet/IP см. каталог "Communication networks in machines and installations".

Сервопреобразователи Lexium 32

Интерфейсные карты и датчики для сервопреобразователя Lexium 32M

Интерфейсная карта датчика

Описание

Сервопреобразователь Lexium 32M может оснащаться интерфейсной картой датчика. Карта представляет собой дополнительный вход для сигналов от внешнего датчика, позволяющий получить дополнительные преимущества:

- Возможность подключения к двигателям других производителей, что увеличивает гибкость установки
- Возможность улучшения точности позиционирования, снижая влияние механических люфтов, благодаря измерению положения непосредственно на механизме соответствия требованиям применений в простых механизмах или комплексных системах управления, требующих очень высоких скорости реакции и точности движения.

Имеются три интерфейсные карты, соответствующие различным типам датчиков:

■ Резольвер

Характеристи	КИ						
Интерфейсная ка		epa VW3	M3 401				
Разъем для подключ				й гнездовой S	SUB-D разъем		
Интерфейсная ка	рта для датч	иков с ц	ифровым в	зыходом V\	N3 M3 402		
Напряжение питания	A/B/I BISS EnDat 2.2	В	5 B				
	SSI	В	12 B				
Разъем для подключ	ения		15-контактн	ый гнездовой	разъем SUB-D		
Интерфейсная ка	рта для датч	иков с а	налоговым	выходом	VW3 M3 403		
Напряжение питания	1 Vpp/Hall 1 Vpp EnDat 2.1	В	5B				
	Hiperface	В	12 B				
Разъем для подключ			15-контактный гнездовой разъем SUB-D				
Каталожные н							
Описание	Тип выхода		Тип датчика На меха- низме	На двига- теле	_ № по каталогу	Масса, кг	
Карта резольвера					VW3 M3 401	-	
Карта датчика с цифровым выходом	A/B/I				VW3 M3 402	-	
	BISS EnDat 2.2						
Карта датчика с аналоговым выходом	1 Vpp				VW3 M3 403	-	
	1 Vpp/Hall EnDat 2.1 Hiperface						
Принадлежности	для подключ						
Описание		Характер	оистики	Длина, м	№ по каталогу	Масса, кг	
Разъем 9-контактный штыревой Для карты резольвера	разъем SUB-D	-		-	AEO CON 011	-	
	с цифровым	-		5	VW3 M4 705	-	
для интерфейсных карт с цифровым или аналоговым выходом датчика Кабель для выполнения подключений к		5 x (2 x 0.25 м	2\	100	VW3 M8 221R1000	21.000	

Сервопреобразователи Lexium 32

Интерфейсные карты и датчики для сервопреобразователя Lexium 32M

Датчики Osicoder®, подключаемые к карте VW3 M3 402

Описание

Для удовлетворения требований комплексного решения задач, Schneider Electric предлагает семейство датчиков Osicoder®. Они подключаются к интерфейсной карте W3 M3 402.

Датчики $\,$ Osicoder $^{\circ}$ могут предлагаться как $\,$ с $\,$ относительным отсчетом, так $\,$ и $\,$ с $\,$ абсолютным отсчетом.

Предлагаемые датчики с относительным отсчетом и с конфигурируемым разрешением удовлетворяют требованиям, предъявляемым к наиболее распространенным механизмам с установленными датчиками обратной связи с выходными сигналами A/B/I. Предлагаемые датчики с абсолютным отсчетом находятся в числе наиболее распространенных датчиков обратной связи промышленных механизмов с интерфейсом SSI.

Более подробная информация по датчикам $Osicoder^{\odot}$ приведена в каталоге "Rotary encoders — $Osicoder^{\odot}$ ".

Датчик с относительным отсчетом Ø 58 мм

Принцип действия датчиков основан на дифференциальном оптическом считывании, при этом импульсные датчики XCC в высшей степени работоспособны, благодаря технологии изготовления и применению трех считывающих головок.

Циклическая передача данных осуществляется даже в том случае, если:

- Вышел из строя один из передающих элементов
- Снижена эффективность передающих компонентов (до 30%)
- Имеются отложения мелкодисперсной пыли на оптических элементах

Конфигурируемый датчик со сплошным валом Ø 10 мм							
Разрешение	Тип разъема	Тип выходного каскада	Напряжение питания	№ по каталогу	Масса, кг		
500080000 точек	Штыревой круговой разъем	5 B, RS 422	4.7530 B	XCC 1510PSM50X	0.465		

Примечание: импульсный датчик типа XCC может также использоваться как датчик-«мастер» для сервопреобразователей Lexium 32C и Lexium 32M при его подключении к входу РТІ.

Датчик с абсолютным отсчетом Ø 58 мм

Датчик с абсолютным отсчетом постоянно выдает в виде кода фактическое положение перемещающегося устройства, которым необходимо управлять. При первичной подаче питания или при его восстановлении после аварийного отключения, датчик будет выдавать элементы данных, которые могут прямо использоваться в управляющих системах.

Разрешение	Тип разъема	Тип выходного каскада	Напряжение питания	№ по каталогу	Масса, кг
3192 точек	Штыревой круговой разъем M23	SSI, 13 бит, двоичный	1130 B	XCC 2510PS81SBN	0.460
Многооборотн	ый датчик со сплоц	іным валом Ø	10 мм		
8192 точек х 4096 оборотов	Штыревой круговой разъем M23	SSI, 25 бит, двоичный	1130 B	XCC 3510PS84SBN	0.685

Датчик с относительным отсчетом XCC 1510PSM50X

Датчик с абсолютным отсчетом XCC 2510PS81SBN

Скорость серводвигателя

Скорость серводвигателя

0

Сервопреобразователи Lexium 32

Модуль безопасности для сервопреобразователя Lexium 32M

Описание

Модуль безопасности eSM позволяет сервопреобразователю Lexium 32 реализовывать дополнительные функции безопасности помимо функции Safety Torque Off (STO), превращаясь, таким образом, в комплексное устройство безопасности, обеспечивающее надежный контроль состояния установки.

Модуль безопасности eSM позволяет оптимизировать суммарные затраты в рамках всей установки благодаря отсутствию необходимости для применения дополнительных внешних устройств безопасности, соответствуя, в то же время, международным стандартам безопасности. В результате выполнение подключений становится быстрее и дешевле.

Модуль также улучшает технические характеристики во время эксплуатации, уменьшая время замедления механизма или установки и увеличивая безопасность выполнению любых работ.

Модуль выполняет функции безопасности в соответствии со стандартом MЭК/EN 61800-5-2. Возможна реализация следующих функций, требуемых при использовании большинства механизмов:

- Safe Torque Off (STO)
- Safe Stop 1 (SS1)
- Safe Stop 2 (SS2)
- Safe Limited Speed (SLS)
- Safe Operating Stop (SOS)

Функции безопасности

Функция безопасности Safe Stop 1 (SS1)

Функция безопасности SS1 используется для безопасной остановки в соответствии с категорией 1. При активизации данной функции серводвигатель тормозится под управлением сервопреобразователя, продолжающего выдавать питание на привод (двигатель). Питание с приводного двигателя снимается после того, как исполнительный механизм будет остановлен.

t (c)

t (c)

Запуск STO момент)

Управляемое торможение

Запуск SS1

Запуск функции безопасности Safe Stop 2 (SS2)

Запуск функции безопасности Safe Stop 1 (SS1)

Функция безопасности Safe Stop 2 (SS2)

Функция безопасности SS2 используется для безопасной остановки в соответствии с категорией 2. При активизации данной функции серводвигатель тормозится под управлением сервопреобразователя, продолжающего выдавать питание на привод (двигатель). Как только двигатель останавливается, он фиксируется при помощи функции Safe Operating Stop (SOS).

Запуск SS2

Запуск функции безопасности Safe Limited Speed (SLS)

Функция безопасности Safe Limited Speed (SLS)

Функция безопасности SLS используется для контроля сконфигурированной максимальной скорости. При превышении данного значения серводвигатель останавливается в соответствии с логикой функции безопасности SS2.

Функция безопасности Safe Operating Stop (SOS)

Функция безопасности SOS используется для контроля любых отклонений от неподвижного положения, как только двигатель останавливается.

40

Сервопреобразователи Lexium 32 Модуль безопасности для сервопреобразователя

Lexium 32M

Модуль безопасности VW3 M3 501

Электрические ха	Электрические характеристики						
Питание	В	24 B (от 19 до 30 B)					
Дискретные входы		Дискретные входы: $11 \times \dots 24 B$ Защита от ошибочной полярности подключения Пороги переключения: В соответствии с стандартом МЭК 61131-2, тип 1 Состояние 0 , если $\leq 5 B$ Состояние 1 , если $\geq 15 B$					
Дискретные выходы		Дискретные выходы с открытым коллектором 7 х 24 В Защита от короткого замыкания					
Соответствие стандартам		Соответствует стандарту безопасности механизмов ISO 13849-1, уровень е (PL e) Соответствует стандарту функциональной безопасности МЭК/EN 61508, уровень SIL 3 Соответствует стандарту функциональной безопасности МЭК/EN 62061, уровень SIL 3					

Каталожные номера						
Описание	Длина кабеля	№ по каталогу	Macca			
	М		КГ			
Модуль безопасности eSM для сервопреобразователя Lexium 32	-	VW3 M3 501	_			
Кабель для подключения с 24-контактным гнездовым разъемом (к модулю безопасности) и свободным концом	3	VW3 M8 801R30	_			

Тормозные сопротивления

Описание

Встроенное тормозное сопротивление

Сервопреобразователь оснащается встроенным тормозным сопротивлением, служащим для поглощения энергии торможения. Оно начинает работать, когда напряжение на шине звена постоянного тока сервопреобразователя превышает определенное значение. На тормозном сопротивлении выделяемая энергия превращается в тепло.

Внешнее тормозное сопротивление

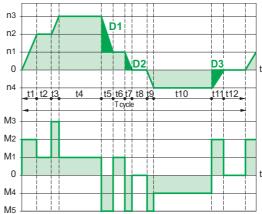
При частых торможениях серводвигателя необходимо использовать внешнее тормозное сопротивление для рассеивания избыточной энергии торможения.

При использовании внешнего тормозного сопротивления, встроенное сопротивление должно быть отключено. Для этого необходимо убрать перемычку между выводами сервопреобразователя PA/+ и PBI и подключить внешнее тормозное сопротивление между PA/+ и PBE.

Два и более тормозных сопротивления могут подключаться параллельно. Сервопреобразователь контролирует мощность, рассеиваемую на тормозном сопротивлении.

Расчет параметров тормозного сопротивления

При торможении или замедлении серводвигателя, выполняемом сервопреобразователем, он должен поглощать кинетическую энергию движущейся нагрузки. Энергия, генерируемая в процессе замедления, приводит к заряду конденсаторов сервопреобразователя.


Когда напряжение на выводах конденсаторов превышает разрешенный порог, происходит автоматический сброс энергии на тормозное сопротивление (встроенное или внешнее) для рассеивания этой энергии.

Для расчета мощности, рассеиваемой на тормозном сопротивлении, необходимо знать временную диаграмму работы серводвигателя со значениями моментов и скоростей, позволяющую определить участки характеристики, на которых происходит замедление механизма.

Циклограмма работы серводвигателя

Приведенные характеристики являются аналогичными кривым, используемым на стр. 116 для выбора типоразмера серводвигателя. Необходимо принимать во внимание участки характеристики, на которых сервопреобразователь работает в режиме замедления нагрузки (D_i).

Необходимый момент М

(продолжение)

Сервопреобразователи Lexium 32

Тормозные сопротивления

Расчет параметров тормозного сопротивления (продолжение)

Расчет постоянного значения энергии при замедлении

Для этого необходимо знать полный момент инерции, определяемый как:

J. (полная инерция) = Jm (инерция серводвигателя) + Jc (инерция нагрузки).

Для определения **Jm**, см. стр. 62 и 88.

Энергия Е, каждого участка замедления определяется следующим образом:

$$E_i = \frac{1}{2}J_t.\omega i^2 = \frac{1}{2}J_t.\left(\frac{2\pi n_i}{60}\right)^2$$

что дает для различных участков:

$$E_1 = \frac{1}{2}J_t \cdot \left(\frac{2\pi [n_3 - n_1]}{60}\right)^2$$

$$E_2 = \frac{1}{2}J_t \cdot \left(\frac{2\pi n_1}{60}\right)^2$$

$$E_3 = \frac{1}{2}J_t \cdot \left(\frac{2\pi n_4}{60}\right)^2$$
,

где \mathbf{E}_{i} выражено в Джоулях, \mathbf{J}_{i} - в кгм², w - в радианах и \mathbf{n}_{i} - в об/мин.

Поглощение энергии встроенными конденсаторами

Способность сервопреобразователя к поглощению энергии Edrive (без использования внешнего или встроенного тормозного сопротивления) приводится для каждого сервопреобразователя в

В дальнейших расчетах должны учитываться только участки **D**_i, на которых энергия **E**_i больше, чем поглощающая способность **Edrive**. Этот излишек энергии **E**_n необходимо рассеивать на тормозном сопротивлении (встроенном или внешнем):

 $\mathbf{E}_{\mathbf{D}i} = \mathbf{E}_{i}$ - **Edrive** (в Джоулях).

Расчет длительной мощности

Длительная мощность Рс рассчитывается для каждого рабочего цикла:

$$Pc = \frac{\sum E_{Di}}{Tcycle}$$

где **Рс** измеряется в Вт, \mathbf{E}_{ni} - в Дж и **T cycle** - в секундах.

Выбор тормозного сопротивления (встроенное или внешнее)

Данный метод расчета является упрощенным. Для сложных механизмов, например, при использовании вертикальных осей перемещения, приведенного расчета недостаточно. В этом случае необходимо обращаться в Schneider Electric.

Выбор осуществляется в два этапа:

- 1 Использование встроенного тормозного сопротивления достаточно при выполнении двух
 - Максимальная энергия, выделяемая в процессе торможения, должна быть меньше пиковой энергии, которую способно поглотить встроенное тормозное сопротивление ($\mathbf{E}_{\mathrm{Di}} < \mathbf{EPk}$)
 - Длительная мощность, рассеиваемая на встроенном тормозном сопротивлении, также должна быть меньше длительной мощности торможения (Pc < PPr)
- 2 Если хотя бы одно из вышеуказанных условий не выполняется, необходимо использовать внешнее тормозное сопротивление

Величина внешнего тормозного сопротивления должна находиться между минимальным и максимальным значениями, указанными в таблице на стр. 44. В противном случае возникает опасность нарушения корректной работы сервопреобразователя и невозможности выполнить безопасное торможение нагрузки.

Schneider

Сервопреобразователи Lexium 32 Тормозные сопротивления

Тормозные сопротивлени	я для сервопреобразоват	елей LXI	M 32•••		ием						
Тип сервопреобразователя				LXM 32•U45M2		LXM 32•U90	M2	LXM 32	●D18M2	LXM 32•D	30M2
Количество фаз			_	Одна							
Порог срабатывания			В	430						T	
Тоглощение энергии встроенными конденсаторами		Edrive	Дж (Вт⋅с)	30		60		89		119	
Встроенное сопротивление	Номинальное сопротивление		Ом	94		47		20		10	
	Постоянная мощность	PPr	Вт	10		20		40		60	
	Пиковая энергия	EPk	Дж (Вт⋅с)	82		166		330		550	
Внешнее сопротивление	Минимальное сопротивление		Ом	68		36		20		12	
	Максимальное сопротивление		Ом	110		55		27		16	
Тормозные сопротивлени	я для сервопреобразоват	елей LXI	M 32•••	•М2 с напряжен	ием	питания \sim	230 B				
Тип сервопреобразователя				LXM 32•U45M2		LXM 32•U90	M2	LXM 32	●D18M2	LXM 32•D	30M2
Количество фаз				Одна							
Торог срабатывания			в	430							
Поглощение энергии встроенными конденсаторами		Edrive	Дж (Вт⋅с)	9		18		26		35	
Встроенное сопротивление	Номинальное сопротивление		Ом	94		47		20		10	
•	Постоянная мощность	PPr	Вт	10		20		40		60	
	Пиковая энергия	EPk	Дж (Вт⋅с)	82		166		330		550	
Внешнее сопротивление	Минимальное сопротивление		Ом	68		36	20) 12		
	Максимальное сопротивление		Ом	110		55		27		16	
Тормозные сопротивлени Тип сервопреобразователя	я для сервопреобразоват	елей LXN	M 32•••	LXM 32 ●U60N4	LXIV		400 B LXM 32 •D18N4	ļ	LXM 32 ●D30N4	LXM 3	
Количество фаз				Три							
Торог срабатывания 			В	780			I		T		
Тоглощение энергии встроенными конденсаторами		Edrive	Дж (Вт⋅с)	14	25		50		73	145	
Зстроенное сопротивление	Номинальное сопротивление		Ом	132	60		30		30	10	
	Постоянная мощность	PPr	Вт	20	40		60		100	150	
	Пиковая энергия	EPk	Дж (Вт⋅с)	200	400		600		1000	2400	
Внешнее сопротивление	Минимальное сопротивление		Ом	100	47		33		15	8	
	Максимальное сопротивление		Ом	145	73		50		30	12	
Тормозные сопротивлени	я для сервопреобразоват	елей LXI	M 32•••	•N4 с напряжен	ием	питания \sim	480 B				
Тип сервопреобразователя				LXM 32 •U60N4	LXN •D1	1 32 I 2N4	LXM 32 •D18N4		LXM 32 ●D30N4	LXM 3 ●D72I	
Количество фаз				Три							
Торог срабатывания			В	780							
Поглощение энергии встроенными конденсаторами		Edrive	Дж (Вт⋅с)	3	5		10		14	28	
Встроенное сопротивление	Номинальное сопротивление		Ом	132	60		30		30	10	
	Постоянная мощность	PPr	Вт	20	40		60		100	150	
	Пиковая энергия	EPk	Дж (Вт⋅с)	200	400		600		1000	2400	
Знешнее сопротивление	Минимальное сопротивление		Ом	100	47		33		15	8	
SHEMHEE COMPONIBLEME											

Описание: стр. 42

Каталожные номера: стр. 45

Размеры: стр. 52

Сервопреобразователи Lexium 32 Тормозные сопротивления

Тип тормозного сопротивлен	ия		VW3 A7 601 R●●608 R●●	VW3 A7 70●
Гемпература окружающей	При работе	°C	0+ 50	
среды вблизи устройства	При хранении	°C	- 25+ 85	- 25+ 70
Соответствие стандартам			UL (за исключением тормозных сопротивлений W3 A7 601, 604 и 607)	-
Степень защиты оболочки			IP 65	IP 20
Характеристики под	ключения			
Максимальное сечение			Для сервопреобразователя	Для датчика контроля температуры
роводников	W3 A7 601 R●●608 R●●		Поставляется с соединительным кабелем	-
	VW3 A7 70●		Подключение к шине, М6	2.5 mm ² (AWG 14)

Каталожные номера

WW3 A7 60● R●●

Значение сопротив-	Длительная мощность		Пиковая энергия EPk 115 В 230 В 380 В 480 В			Длина соединительного	№ по каталогу	Macca
ления	ления РРг	1136	230 B	300 B	400 B	кабеля		
Ом	Вт	Вт∙с	Вт∙с	Вт∙с	Вт∙с	М		КГ
10	400	18800	13300	7300	7700	0.75	VW3 A7 601 R07	1.420
						2	VW3 A7 601 R20	1.470
						3	VW3 A7 601 R30	1.620
	1000	36500	36500	22500	22500	_	VW3 A7 705	11.000
15	1000	43100	43100	26500	26500	-	VW3 A7 704	11.000
27	100	4200	3800	1900	1700	0.75	VW3 A7 602 R07	0.630
						2	VW3 A7 602 R20	0.780
						3	VW3 A7 602 R30	0.900
	200	9700	7400	4900	4300	0.75	VW3 A7 603 R07	0.930
						2	VW3 A7 603 R20	1.080
						3	VW3 A7 603 R30	1.200
	400	25500	18100	11400	10500	0.75	VW3 A7 604 R07	1.420
						2	VW3 A7 604 R20	1.470
						3	VW3 A7 604 R30	1.620
72	100	5500	3700	2500	2300	0.75	VW3 A7 605 R07	0.620
						2	VW3 A7 605 R20	0.750
						3	VW3 A7 605 R30	0.850
	200	14600	9600	6600	6000	0.75	VW3 A7 606 R07	0.930
						2	VW3 A7 606 R20	1.080
						3	VW3 A7 606 R30	1.200
	400	36600	24700	16200	15500	0.75	VW3 A7 607 R07	1.420
						2	VW3 A7 607 R20	1.470
						3	VW3 A7 607 R30	1.620
100	100	4400	4400	2900	2900	0.75	VW3 A7 608 R07	0.410
						2	VW3 A7 608 R20	0.560
						3	VW3 A7 608 R30	0.760

Примечание: полная мощность, рассеиваемая на внешнем тормозном сопротивлении (-ях), не должна превышать номинальную мощность сервопреобразователя Lexium 32 (см. стр. 24 и 25).

Сервопреобразователи Lexium 32

Встроенные и дополнительные входные фильтры ЭМС

Описание

Встроенный входной фильтр ЭМС

Функции

Сервопреобразователь Lexium 32 содержит встроенный входной фильтр подавления радиопомех, соответствуя стандарту "Системы силовых электрических приводов с регулируемой скоростью" МЭК/EN 61800-3, второе издание, категория СЗ для условий эксплуатации 2, и Европейской директиве по электромагнитной совместимости (ЭМС).

Для сервопреобразователя

Максимальная длина кабеля до серводвигателя согласно

EN 55011, класс A, Gr2

МЭК/EN 61800-3, категория СЗ, условия эксплуатации 2

Частота коммутации: 8 кГц

M

Однофазное напряжение питания \sim 115 B, 50/60 Гц

LXM 32••••M2 20 (10 метров для категории C2, условия эксплуатации 1)

Однофазное напряжение питания \sim 230 B, 50/60 Гц

LXM 32●●●●M2 20 (10 метров для категории C2, условия эксплуатации 1)

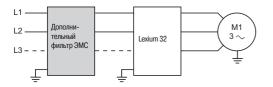
Трехфазное напряжение питания \sim 380 B, 50/60 Гц

LXM 32•••N4

Трехфазное напряжение питания \sim 480 B, 50/60 Гц

LXM 32••••N4 2

Применение


Используемые в сервопреобразователях дополнительные входные фильтры ЭМС позволяют соответствовать самым строгим требованиям и стандартам, они предназначены для снижения наведенных электромагнитных помех в сети ниже значений, устанавливаемых стандартами МЭК/EN 61800-3, второе издание, категории С2 и С3 (см. стр. 47).

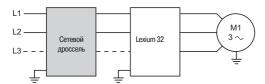
Дополнительные входные фильтры ЭМС устанавливаются в соответствии с инструкцией. В фильтрах имеются отверстия с резьбой для крепления в шкафу.

Использование в зависимости от типа сети

Сервопреобразователи Lexium 32 не могут использоваться в сетях с изолированной нейтралью (IT). Встроенные и дополнительные фильтры ЭМС могут применяться только при питании от сети типов TN и TT.

При необходимости использования сервопреобразователя в сети типа IT должен быть установлен изолирующий трансформатор, позволяющий создать сеть типа TT на вторичной стороне.

Сервопреобразователь Lexium 32 с дополнительным фильтром ЭМС


Сервопреобразователи Lexium 32 Встроенные и дополнительные входные фильтры ЭМС

Соответствие стандартам	ки "сервопреобразова		EN 133200				
ооответствие стандартам			LIV 100200				
Степень защиты			IP 20				
Относительная влажность			В соответствии с МЭК	60721-3-3, класс ЗКЗ, от 5 до 85%, бе	ез конденсации или каплеобра	азования	
Температура окружающей	При работе	°C	0+ 50				
среды вблизи устройства	При хранении	°C	- 25+ 70				
Высота над уровнем моря		м	1000 без ухудшения ха До 2000 м при следую. Максимальная темі Монтажное расстоя	цих ограничениях:	u > 100 мм		
Виброустойчивость	Согласно МЭК 60068-2-6		Амплитуда 0.057 мм от 1g от 57 до 150 Гц:	10 до 57 Гц:			
Ударопрочность	Согласно МЭК 60068-2-27		15 g в течение 11 мс				
Максимальное номинальное напряжение	Однофазное, 50/60 Гц	В	120 + 10% 240 + 10%				
	Трехфазное, 50/60 Гц	В	240 + 10% 480 + 10%				
Применение, категория: EN 61800-3: 2001-02; МЭК 61	800-3, издание 2		Описание				
Категория С2, условия эксплуат				Ограниченное применение, использование в бытовых целях, продажа в зависимости от уровня компетентности продавца и конечного пользователя в области ЭМС			
Категория СЗ, условия эксплуат	гации 2		Для использования в п				
Характеристики подк	лючения						
Максимальное сечение провод	ников		5 мм² (AWG 10)				
Каталожные номера							
Для сервопреобразователей		Максим	альная длина кабеля с	ерводвигателя согласно	№ по каталогу	Macca	
		EN 550		EN 55011			
		категор	N 61800-3,	класс A Gr2 МЭК/EN 61800-3, категория СЗ, условия эксплуатации 2			
		Частота	а коммутации 8 кГц	Частота коммутации 8 кГц			
		М		М		КГ	
Однофазное напряжение п	итания	50		100			
LXM 32•U45M2 LXM 32•U90M2		50		100	VW3 A4 420	0.60	
LXM 32•D18M2 LXM 32•D30M2		50		100	VW3 A4 421	0.77	
	итания						
Трехфазное напряжение п				400	VW3 A4 422	0.90	
Трехфазное напряжение пі LXM 32•U60N4 LXM 32•D12N4 LXM 32•D18N4 LXM 32•D30N4		50		100	VW3 A4 422	0.00	

Описание:	Размеры:
стр 46	стр. 53

Сетевые дроссели

Описание

Сетевые дроссели используются для защиты от перенапряжений в питающей сети и для уменьшения гармоник в кривой тока, потребляемого сервопреобразователем.

Рекомендованные дроссели ограничивают линейный ток. Дроссели разработаны в соответствии со стандартом EN 50178 (VDE 0160, уровень 1 перенапряжения большой мощности в питающей сети).

Значения индуктивности соответствуют падению напряжения от 3 до 5% номинального напряжения сети. Более высокие значения вызывают потерю момента.

Сетевые дроссели устанавливаются на входе сервопреобразователя.

К одному сетевому дросселю можно подключить несколько сервопреобразователей. При этом суммарный ток, потребляемый всеми сервопреобразователями при номинальном напряжении не должен превышать номинального тока сетевого дросселя.

Применение

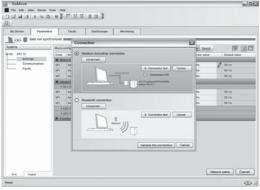
Использование сетевых дросселей настоятельно рекомендуется в следующих случаях:

- При параллельном включении нескольких сервопреобразователей с близко расположенными соединениями
- При наличии в сети значительных помех от другого оборудования (взаимное влияние, перенапряжение)
- При асимметрии напряжения между фазами питающей сети более чем на 1.8% номинального напряжения
- Сервопреобразователь запитан от линии с очень низким полным сопротивлением (в непосредственной близости от питающего трансформатора с мощностью, более чем в 10 раз превышающую мощность сервопреобразователя)
- При установке большого количества сервопреобразователей на одной линии
- Для уменьшения перегрузки конденсаторов установки коррекции коэффициента мощности, если такая установка подключена к фидеру питания

Основные характо	еристики						
Тип сетевого дросселя			VZ1 L007UM50	VZ1 L018UM20	VW3 A4 553	VW3 A4 554	
Соответствие стандартам	ı		EN 50178 (VDE 0160, ypo	вень 1, перенапряжения б	ольшой мощности в питан	ощей сети)	
Падение напряжения			От 3 до 5% номинального напряжения сети Более высокие значения приводят к потере момента				
Степень защиты Дроссель ІР 00							
	Клеммник		IP 20 IP 10				
Значение индуктивности		мГн	5	2	2	1	
Номинальный ток А		7	18	16	30		
Потери		Вт	20	30	75	90	

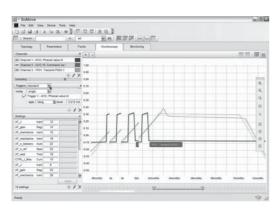
Сервопреобразователи Lexium 32 Сетевые дроссели

Каталожные номера


W3 A4 55●

Сетевые дроссели						
Для сервопреобразователя	Линейный ток и THD				№ по каталогу	Macca
	Без дросс		С дроссел			
	A	%	Α	%		КГ
Однофазное напряжение пита						
LXM 32•U45M2	2.9	173	2.6	85	VZ1 L007UM50	0.880
LXM 32•U90M2	5.4	159	5.2	90	VZ1 L018UM20	1.990
LXM 32⊕D18M2	8.5	147	9.9	74		
LXM 32●D30M2	12.9	135	9.9	72		
Однофазное напряжение пита	ния \sim 230 В,	50/60 Гц				
LXM 32•U45M2	2.9	181	3.4	100	VZ1 L007UM50	0.880
LXM 32•U90M2	4.5	166	6.3	107	VZ1 L018UM20	1.990
LXM 32⊕D18M2	8.4	148	10.6	93		
LXM 32●D30M2	12.7	135	14.1	86		
Трехфазное напряжение питан	ния \sim 380 В,	50/60 Гц				
LXM 32•U60N4	1.4	187	1.9	106	VW3 A4 553	3.500
LXM 32•D12N4	3	174	3.5	88		
LXM 32⊕D18N4	5.5	159	7.2	88	VW3 A4 554	6.000
LXM 32●D30N4	8.7	146	11.6	74		
LXM 32●D72N4	18.1	124	23.5	43		
Трехфазное напряжение питан	ния \sim 480 В,	50/60 Гц				
LXM 32•U60N4	1.2	201	1.6	116	VW3 A4 553	3.500
LXM 32•D12N4	2.4	182	2.9	98		
LXM 32●D18N4	4.5	165	6	98	VW3 A4 554	6.000
LXM 32•D30N4	7	152	9.6	85		
LXM 32●D72N4	14.6	129	19.5	55		

Программное обеспечение SoMove


Первая страница ПО SoMove

Соединение с устройством при помощи ПО SoMove

Панель управления ПО SoMove

Осциллографирование при помощи ПО SoMove

Описание

Программное обеспечение (ПО) SoMove представляет собой удобное для пользователя ПО для персонального компьютера, которое может использоваться для работы с перечисленными ниже устройствами управления двигателями производства компании Schneider Electric:

- Преобразователями частоты ATV 12, ATV 312, ATV 32, ATV 61 и ATV 71
- Устройствами плавного пуска ATS 22
- Многофункциональными реле TeSys U
- Системами для управления электродвигателями TeSys T
- Сервопреобразователями Lexium 32

ПО SoMove включает в себя различные функции для конфигурирования и работы с устройствами:

- Создание конфигурации без подключения к устройству
- Настройка параметров
- Сохранение конфигурации
- Возможность доступа к скрытым параметрам меню

Для выполнения конфигурирования ПО SoMove может подключаться к устройству при помощи кабельного соединения USB/RJ45 или беспроводного соединения Bluetooth®. ПО SoMove полностью совместимо с мультизагрузчиком (Multi-Loader tool) и программным обеспечением для мобильных телефонов SoMove Mobile.

Перечисленные программные инструменты позволяют экономить большое количество времени при настройке, сохранении и изменении конфигурации подключенных устройств.

ПО SoMove и все программные модули для устройств (DTM, Device Type Managers) можно найти на сайте www.schneider-electric.ru.

Функции

Создание конфигурации без подключения к устройству

ПО SoMove обеспечивает доступ ко всем параметрам устройства без непосредственного подключения. Данный режим может использоваться для создания конфигурации устройства. Конфигурация может быть сохранена, распечатана и переслана другому пользователю в виде файла. В ПО SoMove проверяется корректность вводимых параметров, обеспечивая возможность использования конфигурации, созданной без подключения к устройству.

В данном режиме может использоваться большое количество функций, в частности:

- «Мастер» программного обеспечения для конфигурируемого устройства
- Функция сравнения конфигураций
- Сохранение, копирование, распечатка и создание файлов конфигурации для пересылки в мультизагрузчик (Multi-Loader), для ПО SoMove Mobile или в Microsoft Excel®, а также для пересылки конфигурации по электронной почте.

Настройка параметров

При подключении персонального компьютера к устройству ПО SoMove может использоваться:

- Для пересылки созданного файла конфигурации в устройство
- Для изменения настроек и контроля работы, используя следующие функции:
- □ Осциллограф
- □ Отображение параметров связи
- Для простого управления, используя интерфейс панели управления устройства
- Для сохранения окончательной конфигурации

Эксплуатация устройства

Для упрощения эксплуатации устройства ПО SoMove предоставляет следующие возможности:

- Сравнение текущей конфигурации устройства с конфигурацией, сохраненной на ПК
- Пересылка конфигурации в устройство
- Сравнение характеристик, полученных в ходе осциллографирования
- Сохранение полученных в ходе осциллографирования характеристик и перечня неисправностей

Пользовательский интерфейс

ПО SoMove предоставляет быстрый, прямой доступ к информации об устройстве при помощи 5 тяблии:

- My Device: отображает информацию об устройстве (тип, каталожный номер, версия программного обеспечения, карты расширения, и т.д.)
- Parameters: отображает все настраиваемые параметры устройства в виде таблицы или диаграмм
- Faults: отображает список неисправностей, которые могут встретиться в устройстве, журнал неисправностей и текущие аварийные и предупредительные сообщения
- Monitoring: обеспечивается динамическое отображение состояния устройства, его входов/ выходов и всех контролируемых параметров. Возможно создание пользовательской панели управления путем выбора параметров и способа их представления
- Oscilloscope: обеспечивается высокоскоростное осциллографирование (с записью получаемых характеристик в устройстве) или осциллографирование с низкой скоростью (с записью характеристик в программном обеспечении, для устройств без встроенного осциллографа).

Каталожные номера:

стр. 51

Программное обеспечение SoMove

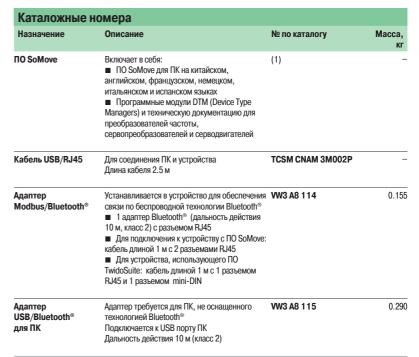
Функции (продолжение)

Подключение

Коммуникационная шина Modbus

ПК с установленным программным обеспечением SoMove может подключаться непосредственно к устройству при помощи разъема RJ45 на стороне устройства и USB-порта на стороне ПК. При этом используется соединительный кабель USB/RJ45.

Ниже приведена таблица с каталожными номерами.


Беспроводное соединение Bluetooth®

В ПО SoMove предусмотрена возможность подключения к устройству посредством беспроводного соединения Bluetooth® при условии, что устройство оснащено соответствующим Modbus/Bluetooth® адаптером. Данный адаптер подключается к сетевому порту Modbus устройства или к порту для подключения графического терминала. Радиус действия адаптера 10 м (класс 2).

Если ПК не оснащен технологией Bluetooth®, необходимо использовать соответствующий USB/Bluetooth® адаптер, подключаемый к ПК.

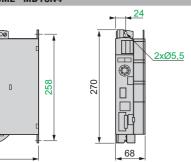
Ниже приведена таблица с каталожными номерами.

Рабочая среда

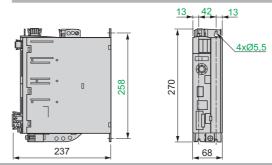
ПО SoMove совместимо со следующими программными и аппаратными средствами:

- Microsoft Windows® SP3
- Microsoft Windows® Vista
- Pentium IV (или эквивалент), 1 ГГц, объем свободной памяти на жестком диске1 Гб, 512 Мб ОЗУ (минимальная конфигурация)

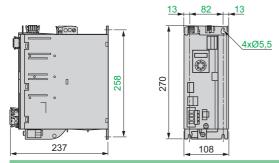

(1) Доступно на сайте www.schneider-electric.ru.


Описание: стр. 50

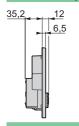
Сервопреобразователи Lexium 32

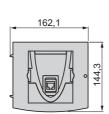

LXM 32CU45M2 - CD18N4 и LXM 32AU45M2 - AD18N4

LXM 32MU45M2 - MD18N4

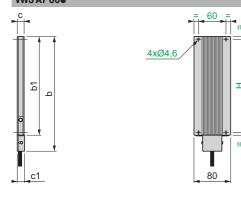


LXM 32 • D30N4




LXM 32 • D72N4

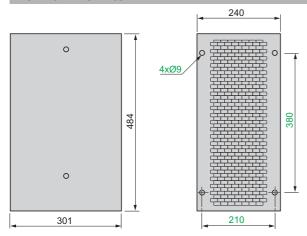
237



Выносной графический терминал VW3 A1 101

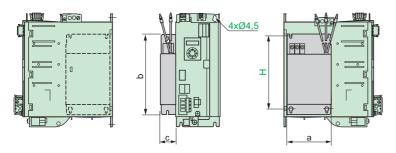
Тормозные резисторы vw3 A7 60•

VW3	b	b1	С	c1	Н
A7 602, 605, 608	145	110	15	15.5	98
A7 603, 606	251	216	15	15.5	204
A7 601, 604, 607	257	216	30	_	204


 Описание:
 Функции:
 Характеристики:
 Каталожные номера:
 Требования безопасности:

 стр. 2
 стр. 12
 стр. 20
 стр. 24
 стр. 54

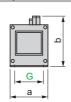
(продолжение)


Тормозные резисторы (продолжение)

VW3 A7 704 и VW3 A7 705

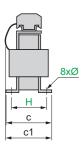
Дополнительные входные фильтры ЭМС VW3 A4 420 - 423

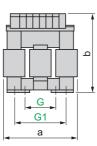
Фильтр устанавливается на боковой стороне сервопреобразователя



VW3	а	b	C	Н	
A4 420	72	195	37	180	
A4 421	107	195	35	180	
A4 422	107	195	42	180	
A4 423	140	235	50	215	

Сетевые дроссели


Однофазные сетевые дроссели VZ1 L007UM50 и VZ1 L018UM20



VZ1	а	b	С	G	Н	Ø	
L007UM50	60	100	95	50	60	4 x 9	
L018UM20	85	120	105	70	70	5 x 11	

Трехфазные сетевые дроссели VW3 A4 553 и VW3 A4 554

VW3	а	b	С	c1	G	G1	Н	Ø
A4 553	130	155	85	90	60	80.5	62	6 x 12
A4 554	155	170	115	135	75	107	90	6 x 12

Функция безопасности Safe Torque Off (STO)

В сервопреобразователь Lexium 32 встроена функция Safe Torque Off (STO), предотвращающая несанкционированную работу серводвигателя. При активном состоянии данной функции серводвигатель не развивает какой-либо момент.

Данная функция безопасности:

- Соответствует стандарту безопасности машин ISO 13849-1, уровень выполнения d (PL d)
- Соответствует стандарту по функциональной безопасности MЭK/EN 61508, уровень SIL2 (контроль и управление системой безопасности процессов и систем)

Характеристика SIL (Safety Integrity Level - уровень целостности системы безопасности) зависит от схемы подключения серводвигателя и реализованных функций безопасности. При несоблюдении рекомендаций по настройке сервопреобразователя уровень SIL может не соответствовать декларируемой для функции безопасности.

- Соответствует стандарту для силовых электрических приводов MЭK/EN 61800-5-2 применительно к двум функциям остановки:
- □ Полный запрет момента Safe Torque Off (STO)
- □ Управляемая остановка 1 Safe Stop 1 (SS1). Данная функция безопасной остановки требует использования модуля безопасности типа Preventa XPS AV с выдержкой времени (1)

Функция Safe Torque Off имеет резервированную электронную архитектуру (2), которая постоянно контролируется функцией диагностики.

Уровень выполнения d (PL d) и уровень SIL2 функции безопасности сертифицируются в соответствии c этими стандартами организацией TUV в рамках программы добровольной сертификации.

Уровень выполнения (PL) в соответствии с ISO 13849-1						
Уровень выполнения PL	Средняя вероятность опасной неисправности в час 1/ч					
a	στ ≥ 10-5 μο < 10-4					
b	oτ ≥ 3 x 10 ⁻⁶ до < 10 ⁻⁵					
С	oτ ≥ 10 ⁻⁶ до < 3 x 10 ⁻⁶					
d	στ ≥ 10-7 μο < 10-6					
е	от $\ge 10^{-8}$ до $< 10^{-7}$					

Примечание: в дополнение к средней вероятности необнаруженной опасной неисправности в час, для достижения соответствующего уровня выполнения PL необходимо выполнение и иных измерений.

Примечание: сервопреобразователь Lexium 32 может использоваться до уровня выполнения d (PL d)

Уровни целостности системы безопасности (SIL) в соответствии с MЭK/EN 61508

Уровень SIL1 в соответствии со стандартом MЭК/EN 61508 сравним с уровнями выполнения b и с (PL b и PL c) согласно ISO 13849-1 (SIL1: средняя вероятность необнаруженной опасной неисправности в час между 10^{-6} и 10^{-6}).

Уровень SIL2 в соответствии со стандартом MЭK/EN 61508 сравним с уровнем выполнения d (PL d) согласно ISO 13849-1 (SIL2: средняя вероятность необнаруженной опасной неисправности в час между 10^{-6} и 10^{-7}).

⁽¹⁾ Подробная информация приведена в каталоге "Safety functions and solutions using Preventa".

⁽²⁾ Резервирование заключается в смягчении последствий от неисправности одного компонента за счет нормальной работы другого при предположении, что они не выйдут из строя одновременно.

Рассмотрение функции безопасности Safe Torque Off

Функция безопасности Safe Torque Off не может рассматриваться в качестве разъединителя питания, подаваемого на серводвигатель (серводвигатель не изолируется электрически от сервопреобразователя). При необходимости для этих целей следует использовать разъединитель Vario.

Функция безопасности Safe Torque Off не предназначена для замещения каких-либо функций управления сервопреобразователем или механизмом в случае любых неисправностей системы управления

Доступные выходные сигналы сервопреобразователя не могут рассматриваться в качестве сигналов для активации связанных с безопасностью функций (в том числе функции Safe Torque Off). Для этого должны использоваться выходы модуля безопасности Preventa (1), интегрированные в цепи управления и сигнализации системы безопасности.

Приведенная ниже информация учитывает соответствие стандарту МЭК/EN 60204-1, согласно которому определяются три категории остановки:

- Категория 0: остановка путем немедленного снятия питания с исполнительного механизма (например, неконтролируемая остановка или остановка на выбеге)
- Категория 1: управляемая остановка с поддержанием питания на исполнительном механизме до его остановки и последующим снятием питания после остановки механизма
- Категория 2: управляемая остановка с поддержанием питания на исполнительном механизме

Применение

Соответствие уровню выполнения d (PL d) согласно ISO 13849-1 и уровню SIL2 согласно MЭК/EN 61508

Приведенные ниже примеры описывают работу функции безопасности Safe Torque Off сервопреобразователя Lexium 32 совместно с модулем безопасности Preventa по контролю цепей аварийного останова

Примеры схем подключения доступны на сайте www.schneider-electric.ru.

Механизмы с малым временем остановки на выбеге (малый момент инерции или большой момент сопротивления).

При подаче команды активации на входы STO питание серводвигателя немедленно отключается, и он останавливается в соответствии с категорией 0 согласно стандарту MЭК/EN 60204-1. Перезапуск не разрешается даже при условии подачи команды пуска для полностью остановленного серводвигателя.

Состояние останова сохраняется, пока активны входы функции STO.

Для грузоподъемных механизмов дополнительно необходимо применение модуля безопасности типа Preventa XPS (1).

При получении команды на активацию функции Safe Torque Off сервопреобразователь дает команду наложения тормоза, но дополнительно контакт модуля безопасности Preventa должен быть последовательно включен в цепь управления тормозом для обеспечения его надежного наложения при активизации функции безопасности.

Механизмы с большим временем остановки на выбеге (большой момент инерции или малый момент сопротивления).

При подаче команды активации сначала начинается торможение серводвигателя, контролируемое сервопреобразователем, затем, в соответствии с временной задержкой, определяемой модулем безопасности Preventa XPS AV (1) и соответствующей времени торможения, активируется функция Safe Torque Off при помощи входов STO. Серводвигатель останавливается в соответствии с категорией 1 стандарта MЭК/EN 60204-1 (Safe Stop 1: SS1).

Периодическое тестирование

С профилактическими целями вход функции Safe Torque Off должен активироваться не менее одного раза в год. До проведения тестирования с сервопреобразователя должно быть снято питание и затем вновь подано. Если при выполнении проверки отключения питания двигателя не произошло, то не обеспечивается целостность системы безопасности для функции Safe Torque Off. В этом случае требуется обязательная замена сервопреобразователя для гарантии функциональной безопасности механизма или производственного процесса.

(1) Подробная информация приведена в каталоге "Safety functions and solutions using Preventa".

Контакторы

Применение

Перечисленные ниже варианты комплектации могут использоваться для создания комплектного устройства управления двигателем с использованием контактора и сервопреобразователя Lexium 32.

Контактор запускает и обеспечивает выполнение некоторых функций безопасности, в том числе изолирование серводвигателя от питания при остановке.

Сервопреобразователь управляет серводвигателем, обеспечивая защиту от короткого замыкания между преобразователем и двигателем и защищая кабель двигателя от перегрузки. Защита от перегрузки обеспечивается настройкой тепловой защиты для двигателя в сервопреобразователе.

LXM 32•U90M2	0.5	1	LC1 D09••
LXM 32•D18M2	1	1	LC1 D12••
LXM 32•D30M2	1.6	1	LC1 D18●●
Трехфазное напр	ряжение питания	\sim 400 В, 50/60 Гц	
		_	

Трехфазное напряжение питания \sim 400 В, 50/60 Гц							
LXM 32•U60N4	0.4	5	LC1 D09●●				
LXM 32•D12N4	0.9	5	LC1 D09●●				
LXM 32•D18N4	1.8	5	LC1 D09●●				
LXM 32•D30N4	3	5	LC1 D12●●				
LXM 32•D72N4	7	5	LC1 D25●●				

Трехфазное нап	Трехфазное напряжение питания \sim 480 B, 50/60 Гц					
LXM 32•U60N4	0.4	5	LC1 D09●●			
LXM 32•D12N4	0.9	5	LC1 D09●●			
LXM 32•D18N4	1.8	5	LC1 D09●●			
LXM 32●D30N4	3	5	LC1 D12●●			
LXM 32●D72N4	7	5	LC1 D25●●			

⁽¹⁾ Состав контакторов:

LC1 D••: 3 полюсный + 1 HO и 1 H3 вспомогательные контакты.

При необходимости возможно использование контакторов LC1 К с 1H3 вспомогательным контактом. Подробная информация приведена в каталоге "Control and protection components".

(2) Замените • на код напряжения цепи управления, приведенный ниже:

	Вольт \sim	24	48	110	220/230	230	230/240
LC1 Dee	50 Гц	B 5	E 5	F5	M5	P5	U5
	50 Гц	В6	E6	F6	М6	_	U6
	50/60 Гц	В7	E7	F7	М7	P7	U7

За информацией о других возможных значениях напряжения от 24 до 660 В или для цепей управления постоянного тока обращайтесь в Schneider Electric.

Каталожные номера:

стр. 24

LC1 D18 LXM 32•D30M2

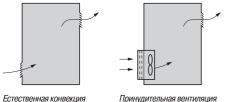
Сервопреобразователи Lexium 32 Предохранители

Сервопреобразователь		Предохранители,
№ по каталогу	Номинальная мощность	устанавливаемые перед преобразователем
	кВт	A
Однофазное напряж	ение питания \sim 100120 B, 50/	⁄60 Гц
XM 32•U45M2	0.15	4
XM 32•U90M2	0.3	6
XM 32•D18M2	0.5	10
XM 32•D30M2	0.8	15
Однофазное напряж	ение питания \sim 200240 B, 50/	60 Гц
XM 32•U45M2	0.3	4
XM 32•U90M2	0.5	6
XM 32•D18M2	1	10
XM 32•D30M2	1.6	15
Трехфазное напряже	ение питания \sim 400 B, 50/60 Гц	
XM 32•U60N4	0.4	2
XM 32•D12N4	0.9	4
XM 32•D18N4	1.8	8
XM 32•D30N4	3	10
XM 32•D72N4	7	20
Трехфазное напряже	ение питания \sim 480 B, 50/60 Гц	
XM 32•U60N4	0.4	2
XM 32•D12N4	0.9	3
XM 32•D18N4	1.8	8
XM 32•D30N4	3	10
XM 32•D72N4	7	20

Рекомендации по установке

Сервопреобразователи LXM 32•U45M2, •U90M2 и LXM 32•U60N4 охлаждаются путем естественной

Сервопреобразователи LXM 32 • D18M2, • D30M2, LXM 32 • D12N4, • D18N4, • D30N4 и • D72N4 снабжены встроенным вентилятором.


При установке сервопреобразователя в шкафу необходимо соблюдать следующие рекомендации, влияющие на значения температуры и степени защиты:

- Обеспечить достаточное охлаждение сервопреобразователя
- Не устанавливать сервопреобразователь рядом с источниками тепла
- Не устанавливать сервопреобразователь на легковоспламеняющиеся конструкции
- Избегать нагрева воздуха, охлаждающего сервопреобразователь, теплом от другого оборудования, например, от внешнего тормозного сопротивления
- Сервопреобразователь устанавливается в вертикальном положении (± 10%)
- Если тепловое состояние сервопреобразователя превысит предельно допустимое значение, он отключается

Примечание: для кабелей, подключаемых в нижней части сервопреобразователя, необходимо предусматривать свободное пространство ≥ 200 мм для соблюдения радиуса изгиба соединительных кабелей.

Температура окружающей среды	Монтажные размеры	Меры предосторожности
0°C+ 50°C	d ≥ 0 мм	-
+ 50°C+ 60°C	d ≥ 0 мм	При температуре выше 50°С выходной ток уменьшается из расчета 2.2% на 1 °С

Примечание: не рекомендуется использование шкафов из изоляционных материалов, поскольку они обладают низкой теплопроводностью.

Принудительная вентиляция

Рекомендации по установке в шкафу

Для обеспечения эффективной циркуляции воздуха в месте размещения сервопреобразователя необходимо:

- Предусмотреть в шкафу отверстия для вентиляции
- Убедиться, что естественной вентиляции достаточно, в противном случае установить дополнительное устройство вентиляции с фильтром
- Любые отверстия и/или вентиляторы должны, как минимум, соответствовать по расходу воздуха вентиляторам сервопреобразователей (см. ниже)
- Использовать специальные фильтры в шкафах со степенью защиты IP 54

Рассеиваемая мощность и производительность вентиляторов в зависимости от типа сервопреобразователя

Сервопреобразователь	Рассеиваемая мощность, Вт	Вентиляция	Производительность, м ³ /мин
LXM 32•U45M2 LXM 32•U90M2 LXM 32•U60N4	10 18 20	Естественная конвекция	- - -
LXM 32•D18M2 LXM 32•D30M2 LXM 32•D12N4 LXM 32•D18N4 LXM 32•D30N4 LXM 32•D72N4	34 38 42 76 129 315	Встроенный вентилятор	0.26 0.26 0.26 0.26 0.26 0.75 1.45

Установка в металлическом шкафу (степень защиты IP 54)

Установка сервопреобразователя в герметичном корпусе необходима при неблагоприятных условиях окружающей среды: пыль, агрессивные газы, большая влажность с риском конденсации и каплеобразования, попадание брызг и т.д.

В подобных случаях сервопреобразователь Lexium 32 может устанавливаться в шкафу, температура внутри которого не должна превышать 60°C.

Расчет размеров шкафа

Максимальное тепловое сопротивление Rth (°C/Вт)

Тепловое сопротивление рассчитывается по следующей формуле:

$$R_{th} = rac{ heta^\circ - heta e}{P}$$
 $heta^\circ = ext{массимальная температура в шкафу, °C} \ heta_E = ext{массимальная внешняя температура, °C} \ heta = ext{полная рассеиваемая мощность в шкафу, ВТ}$

Мощность, рассеиваемая сервопреобразователем, приведена в таблице на предыдущей странице. Необходимо добавить мошность, рассеиваемую другими элементами оборудования.

Площадь поверхности шкафа, используемая для теплообмена S (м²)

В случае настенной установки шкафа площадь поверхности шкафа, используемая для теплообмена, определяется как сумма двух боковых, верхней и лицевой панелей.

Для металлических шкафов:

- k = 0.12 со встроенным вентилятором
- k = 0.15 без вентилятора

Примечание: не рекомендуется использование шкафов из изоляционных материалов, поскольку они обладают низкой теплопроводностью.

Подключение в соответствии с нормами ЭМС

Основные положения

- Точки подключения заземления к сервопреобразователю, серводвигателю и экранирующей оболочке кабеля должны иметь «высокочастотную» эквипотенциальность.
- Необходимо использовать экранированные кабели с заземленным с двух сторон по всей окружности экраном для подключения серводвигателя, тормозного сопротивления и цепей управления. Экранирование может быть выполнено на части кабеля при помощи металлических труб или каналов при условии, что отсутствует разрыв заземления экрана на всей длине участка кабеля.
- Кабель сетевого питания должен располагаться как можно дальше от кабеля двигателя.

Примечание: наличие высокочастотного эквипотенциального соединения между «землей» и сервопреобразователем, серводвигателем и экраном кабеля не снимает необходимости подключения защитных проводников РЕ (желто-зеленых) к соответствующим клеммам каждого устройства. При использовании дополнительного входного фильтра ЭМС он устанавливается с боковой стороны сервопреобразователя и подключается к сети неэкранированным кабелем. Питание сервопреобразователя при этом осуществляется посредством кабеля с выхода фильтра.

Использование в системе IT

(изолированная или заземленная через сопротивление нейтраль)

Основные положения

В цепь питания сервопреобразователя устанавливается трехфазный трансформатор НН/НН, позволяющий создать систему питания ТТ для нагрузки на вторичной обмотке трансформатора. Данная схема с вторичной обмоткой трансформатора, соединенной в «звезду», удовлетворяет следующим требованиям:

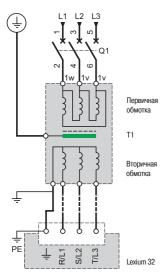
- Защита персонала
- Согласование с напряжением питающей сети

Выбор трехфазного трансформатора T1

Выбор трансформатора производится по следующей формуле:

■ Сервопреобразователь Lexium с независимым питанием (каждому сервопреобразователю соответствует свой трансформатор):

$$Pu = \left(\sqrt{3} \times Un \times In \times K\right) \times 1,5,$$


где Pu - мощность трансформатора (кВА), Un - номинальное напряжение на входе (В), In - длительный ток (А), K (= 0.9) - понижающий коэффициент для сервопреобразователя и коэффициент 1.5 - фактор, учитывающий пусковые и максимальные токи сервопреобразователя.

■ Сервопреобразователь Lexium с общим питанием (каждому трансформатору соответствует n подключенных сервопреобразователей):

$$Pm = (\sum Pu)/2$$

Если Pm < Pu для наибольшего сервопреобразователя, принимается Pm = Pu для сервопреобразователя наибольшей мощности.

Здесь Pm - общая используемая мощность (кВА), и Pu - мощность одного сервопреобразователя (кВА). Формула не может быть применена для длительного (S1) режима работы.

Подключение сервопреобразователя Lexium 32 в систему с изолированной нейтралью

Серводвигатели ВМН

Серводвигатель ВМН с прямыми разъемами

Момент. Н-м

Серводвигатель ВМН с вращаемыми угловыми разъемами

Рабочая зон

Представление

Серводвигатели ВМН выделяются наилучшей в своем классе удельной мощностью, соответствуя требованиям, предъявляемым при разработке даже самых компактных механизмов. Четыре типоразмера фланцевых соединений при трех возможных длинах корпуса для каждого фланца позволяют получить решение для максимально возможного количества механизмов в диапазоне моментов от 1.2 до 84 Н-м при максимальной скорости 8000 об/мин.

Благодаря конструкции со средним моментом инерции новые серводвигатели ВМН позволяют работать с механизмами с более высоким моментом инерции нагрузки, чем ранее для таких же типоразмеров серводвигателей, увеличивая передаточный коэффициент при стабилизации работы и соответствуя, таким образом, требованиям, предъявляемым при работе с «тяжелой» нагрузкой. Серводвигатели ВМН предлагаются с четырьмя типоразмерами фланцев: 70, 100, 140 и 205 мм. Серводвигатели сертифицированы с отметкой Recognized № организацией Underwriters Laboratories и соответствуют стандартам UL 1004, равно как и Европейским директивам (маркировка С €). Серводвигатели ВМН предлагаются в следующих вариантах исполнения:

- Степень защиты IP 50 или IP 65 (IP 67 с доступными в качестве дополнительного оборудования уплотнениями)
- С удерживающим тормозом или без него
- Прямые или угловые разъемы для подключения
- Одно- или многооборотный датчик положения ротора SinCos
- С гладким концом вала или с концом вала со шпонкой

Характеристики момента/скорости

Слева приведен пример характеристики момента/скорости серводвигателя ВМН, где показаны:

- 1 Пиковый момент, зависящий от модели сервопреобразователя
- 2 Длительный момент, зависящий от модели сервопреобразователя,

где:

- n_{max} (в об/мин) соответствует максимальной скорости вращения серводвигателя
- М..... (в Н·м) величина пикового момента при нулевой скорости
- M₀ (в Н·м) величина длительного момента при нулевой скорости

Принцип выбора серводвигателя в зависимости от применения

Характеристики момента/скорости могут использоваться для правильного выбора типоразмера серводвигателя:

1 Определяется рабочая зона механизма по скорости вращения

2 На основании циклограммы работы серводвигателя подтверждается, что требуемый для привода механизма момент во всех фазах цикла работы расположен внутри рабочей зоны, ограниченной кривой 1

3 Рассчитываются средняя скорость \mathbf{n}_{avg} и эквивалентный тепловой момент \mathbf{M}_{en} (см. стр. 92)

4 Точка, определяемая значениями \mathbf{n}_{avg} и \mathbf{M}_{eq} , должна располагаться ниже кривой **2** в рабочей зоне

Примечание: более подробно алгоритм выбора серводвигателя приведен на стр. 116.

Функции

Основные функции

Серводвигатели ВМН разработаны с учетом следующих требований:

- Функциональные возможности, прочность, безопасность и другие особенности в соответствии с MЭК/EN 60034-1
- Рабочая температура окружающей среды:
- □ 20...40°С в соответствии с DIN 50019R14
- □ Максимальная температура 55°C со снижением номинальной выходной мощности на 1% при увеличении температуры на 1°C выше 40°C
- Относительная влажность: МЭК 60721-3-3, категория 3К4
- Максимальная рабочая высота над уровнем моря: 1000 м без ухудшения характеристик, 2000 м с коэффициентом k = 0.86, 3000 м с коэффициентом k = 0.8 (1)
- Температура хранения и транспортировки: 25...70°C
- Класс изоляции обмоток: F (предельная температура обмоток 155°C) в соответствии с DIN VDE 0530
- Подключение питания и датчика положения ротора через прямые или угловые разъемы
- Тепловая защита осуществляется сервопреобразователем Lexium 32 с помощью алгоритма расчета температуры
- Допуски на радиальное биение, несоосность и неперпендикулярность между фланцем и валом в соответствии с DIN 42955, класс N
- Разрешенные установочные положения: без ограничений для IMB5 IMV1 и IMV3 в соответствии с DIN 42950
- Лакокрасочное покрытие на основе полиэфирной смолы: черный цвет RAL 9005

(1) k: коэффициент снижения номинальных параметров.

Серводвигатели ВМН

Функции (продолжение)

Основные функции (продолжение)

- Степень защиты:
- □ Корпус серводвигателя: IP 65 в соответствии с MЭK/EN 60529 (IP 67 с доступными в качестве дополнительного оборудования уплотнениями, см. стр. 75)
- □ Конец вала: IP 50 (1) или IP 65 в соответствии с MЭК/EN 60529 (IP 67 с доступными в качестве дополнительного оборудования уплотнениями, см. стр. 75)
- \blacksquare Встроенный датчик положения ротора: SinCos Hiperface $^{\circ}$, одно- или многооборотный, со средним или высоким разрешением
- Конец вала: гладкий или со шпонкой

Удерживающий тормоз

Серводвигатели ВМН могут оснащаться надежным электромагнитным удерживающим тормозом.

Удерживающий тормоз не может использоваться в качестве устройства для торможения в динамических режимах работы, т.к. это может привести к быстрому выходу тормоза из строя.

Встроенный датчик положения ротора

Серводвигатели ВМН в стандартном исполнении оснащаются абсолютным датчиком положения ротора. Могут применяться четыре типа датчиков:

- Датчик SinCos Hiperface® с высоким разрешением:
- □ однооборотным (131 072 точек/оборот) (2) или
- □ многооборотным (131 072 точек/оборот х 4096 оборотов) (2),

обеспечивающим точность углового положения вала менее чем ± 1,3 минуты

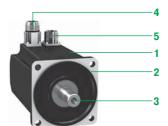
- Датчик SinCos Hiperface® со средним разрешением:
- □ однооборотным (32,768 точек/оборот) (2) или
- □ многооборотным (32,768 точек/оборот х 4096 оборотов) (2),

обеспечивающим точность углового положения вала менее чем \pm 4,8 минуты

Датчик выполняет следующие функции:

- Выдает абсолютное положение ротора серводвигателя, что позволяет осуществлять синхронизацию
- Измеряет скорость серводвигателя совместно с подключенным сервопреобразователем Lexium 32 Информация от датчика положения ротора используется регулятором скорости сервопреобразователя:
- Измеренная датчиком информация о положении ротора передается в контроллер для позиционирования
- Данные серводвигателя пересылаются в сервопреобразователь, обеспечивая автоматическую идентификацию серводвигателя при пуске сервопривода

Описание


Серводвигатель BMH состоит из трехфазного статора и 10-полюсного ротора с магнитами из сплава NdFeB (неодим, железо, бор), а также включает в себя следующие конструктивные элементы:

- 1 Корпус с лакокрасочным покрытием черного цвета RAL 9005
- 2 Фланец с 4 отверстиями для осевого крепления
- 3 Конец вала: гладкий или со шпонкой (в зависимости от модели)
- **4** Прямой штыревой герметичный разъем с винтовым соединением для подключения силового кабеля (3)
- 5 Прямой штыревой герметичный разъем с винтовым соединением для подключения кабеля управления (датчика положения ротора) (3)

Отдельно может быть заказана соединительная арматура для подключения к сервопреобразователям Lexium 32 (см. стр. 76).

Компания Schneider Electric просит обратить особое внимание на обеспечение совместимости между серводвигателями ВМН и сервопреобразователями Lexium 32. Данная совместимость может быть обеспечена только при использовании кабелей и разъемов, поставляемых компанией Schneider Electric (см. стр. 76).

- (1) IP 50 при установке в положении IMV3 (вертикальная установка с концом вала вверху), IP 54 при установке в положении IMV1 (вертикальная установка с концом вала внизу) или положении IMB5 (установка в горизонтальном положении).
- (2) Разрешение датчика приведено для использования совместно с сервопреобразователем Lexium 32.
- (3) Другие модели с вращаемым угловым разъемом.

Каталожные номера: стр. 74

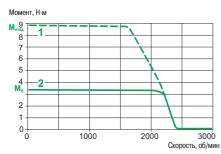
Размеры стр. 78

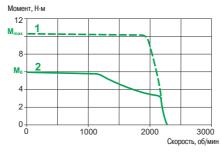
Серводвигатели ВМН Однофазное напряжение питания 115 В

Подислочаемый сервопреобразователь Lexium 32	
Пинент Дулительный при нулевой Можента Н-м 1.4 2.5 3.4	
омент Длительный при нулевой м ним ним ним ним ним ним ним ним ним н	
Н.м. 1.35 2.3 3.1	
Номинальная окорость Номинальная окорость Номинальная мощность на выходе Вт 350 600 650	
Номинальная мощность на выходе серводвигателя адактеристики серводвигателя адактеристики серводвигателя аксимальный ток А, действ. об/мин вооо об/мин оборатной ЭДС обратной ЭДС обратн	
аксимальный ток А, действ. Об/мин Вооо Обратной ЭДС Нерция Без тормозом Диерция Стормозом Диерция Стормозом Дидухтивность (межфазная) Момента Обратной ОТТ Стормозом Индухтивность (межфазная) Момента Обратной ОТТ Серводвигатель ВМН 070 ТТ Серводвигатель ВМН 070 ТТ Серводвигатель ВМН 070 ТТ Серводвигатель ВМН 070 ТТ Серводвователем LXM 32•D30M2 Момент, Н.м	
арактеристики серводвигателя об/мин 8000 обратной ЭДС Н-м/А, действ. 1000 об/мин 100 обратной ЭДС В, действ. 1000 об/мин 100 обратной ЭДС Отормозом J, кг-см² 0.59 1.13 1.67 С тормозом J, кг-см² 0.7 1.24 1.78 обратной ЭДС Опротивление (межфазное) Ом 3.2 1.15 1.32 обратитики момента/скорости надмение (межфазная) мГн 9.1 3.6 4.3 обратитики момента/скорости нерводвигатель ВМН 070 1Т Серводвигатель ВМ	
об/мин 8000 Момента Н-м/А, действ. О.49 О.46 О.61	
остояные ри 120°C) Момента Н+м/А, действ. Обратной ЭДС В, действ. 100 об/мин Инерция Без тормоза Инерция Без тормоза Инерция Без тормоза Индуктивность (межфазное) Индуктивность (межфазная) МГН 9.1 З.6 Карактеристики момента/скорости Серводвигатель ВМН 070 1Т Серводвигатель ВМН 070 3Т Серводвигатель ВМН 070 3Т Серводвигатель ВМН 070 3Т Серводвигатель ВМН 070 3Т Сервопреобразователем LXM 32•D30И Момент, Н-м	
ри 120°С) Действ.	
отор Число полюсов 10	
Инерция Без тормоза J _m кг-см² 0.59 1.13 1.67 татор при 20°С) Сопротивление (межфазнае) Ом 3.2 1.15 1.32 При 20°С) Индуктивность (межфазная) мГн 9.1 3.6 4.3 Характеристики момента/скорости Серводвигатель ВМН 070 1T Серводвигатель ВМН 070 2T Серводвигатель ВМН 070 3T С сервопреобразователем LXM 32. D30M2 С сервопреобразователем LXM 32. D30M2 С сервопреобразователем LXM 32. D30M2 Момент, H-м	
Татор Сопротивление (межфазное) Ом 3.2 1.15 1.32 1.32 1.15 1.32 1.32 1.15 1.32 1.32 1.15 1.32 1.32 1.32 1.15 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32	
татор ири 20°С)	
ри 20°C) Индуктивность (межфазная) МГН 9.1 3.6 4.3 Карактеристики момента/скорости Серводвигатель ВМН 070 1Т Серводвигатель ВМН 070 2Т Серводвигатель ВМН 070 3Т Сервопреобразователем LXM 32•D30M2 Омент, Н-м Момент, Н-м Момент	
Карактеристики момента/скорости Серводвигатель ВМН 070 1T Серводвигатель ВМН 070 2T Серводвигатель ВМН 070 3T Сервопреобразователем LXM 32◆D18M2 Омент, H-м Момент, H-м Мо	
Серводвигатель ВМН 070 1T Серводвигатель ВМН 070 2T Серводвигатель ВМН 070 3T сервопреобразователем LXM 32◆D30M2 С сервопреобразователем LXM 32◆D30M2 Омент, H·м Момент, H·м Момент, H·м Момент, H·м Мимах 2 30,3,3,3,3,4,3,4,4,4,4,4,4,4,4,4,4,4,4,4	
сервопреобразователем LXM 32•D30M2 С сервопреобразователем LXM 32•D30M2 Момент, Н-м Момент, Н-м Момент, Н-м Мимах 3,3,5 4 Мимах 4 Мимах	
Момент, H-м Moment, H-м Momen	
4,5 	30M2
3,5	
3,5 3,0 2,5 2,0 M ₀ 2 1,0	
3.0 2,5 2,0 M ₀ 2 1,0	
2,0 M ₀ 2 1,0 M ₀ 2	
M ₀ 2 1,0	
1,0	
U.3 +	
	3000 40

- Пиковый момент
 Длительный момент

Серводвигатели ВМН Однофазное напряжение питания 115 В


Тип серводвига	теля			BMH 100 1T	BMH 100 2T	
Подключаемый	і сервопреобра	зователь Lexium 32		LXM 32•D30M2		
Настота коммута	ации		кГц	8		
Момент	Длительный п скорости	ри нулевой М _о	Н∙м	3.4	6	
	Пиковый при н	нулевой скорости М _{мах}	Н-м	8.9	10.3	
Іоминальная	Номинальный	момент	Н-м	3.3	3.5	
абочая точка	Номинальная	скорость	об/мин	2000		
	Номинальная серводвигател	мощность на выходе пя	Вт	700	750	
Максимальный ток			А, действ.	15		
Характеристи	ки серводвиг	ателя				
Лаксимальная к настота вращенн			об/мин	6000		
Постоянные при 120°C)	Момента		H·м/А, действ.	0.67	0.72	
	Обратной ЭДО		В, действ./ 1000 об/мин	43.3	46.2	
отор	Число полюсо	В		10		
	Инерция	Без тормоза J _m	K Г∙СМ ²	3.19	6.28	
		С тормозом Ј	KГ∙СМ ²	3.68	6.77	
Статор	Сопротивление (межфазное) Ом			1.19	0.54	
статор при 20°C)						


Серводвигатель BMH 100 1T

Серводвигатель ВМН 100 2Т

С сервопреобразователем LXM 32. D30M2

- Пиковый момент
- Длительный момент

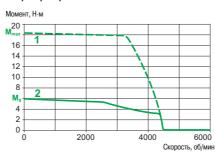
Серводвигатели ВМН Однофазное напряжение питания 230 В

Тип серводвигателя				BMH 070 1T	BMH 07	0 2T	BMH 070 3T
Подключаемый сервопреобразователь Lexium 32				LXM 32•U90M2		D18M2	
астота коммута	шии		кГц	8			
Ломент	Длительный п скорости	ри нулевой Мо	Н∙м	1.4	2.5		3.4
	Пиковый при і	нулевой скорости М _{мах}	Н-м	4	7.4		10.2
оминальная	Номинальный	момент	Н-м	1.1	2.1		2.9
абочая точка	Номинальная	скорость	об/мин	4000			3000
	Номинальная серводвигате.	мощность на выходе ля	Вт	450	900		
Таксимальный т	ОК		А, действ.	9.6	17.7		17.8
Характеристи	ки серводвиі	гателя					
Лаксимальная м астота вращени			об/мин	8000			
Іостоянные при 120°C)	Момента		H⋅м/A, действ.	0.49	0.46		0.61
	Обратной ЭДО	C	В, действ./ 1000 об/мин	31.7	29.6		39.3
отор	Число полюсов			10			
	Инерция Без тормоза J _m		K Г∙СМ ²	0.59	1.13		1.67
		С тормозом J _m	KГ∙СМ ²	0.7	1.24		1.78
татор	Сопротивление (межфазное)		Ом	3.2	1.15		1.32
при 20°C)	Индуктивност	ъ (межфазная)	мГн	9.1	3.6		4.3
Характеристи	ки момента/	скорости					
Серводвигатель	BMH 070 1T		Серводвига	тель ВМН 070 2Т		Серводвигатель В	вмн 070 3Т
сервопреобраз	вователем LXM	32•U90M2	С сервопреоб	бразователем LXM 32∙D18M	12	С сервопреобразо	вателем LXM 32•D18M2
Ломент, Н∙м			Момент, Н⋅м			Момент, Н⋅м	
4,5 M _{max} 1			M _{max}			12	
3,5			7 1			M _{max} _ <u>1</u>	
3,0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		5			8	<u> </u>
2,5			4			6	
2,0		<u> </u>					The state of the s
м,2			3 M ₀ 2			М ₀ 2	
1,0			1		4	2	
0.5.1			1 1		V		
0,5			0			0	

- 1 Пиковый момент
- 2 Длительный момент

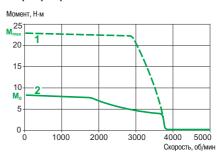
Серводвигатели ВМН Однофазное напряжение питания 230 В

Тип серводвига	теля			BMH 100 1T	BMH 100 2T	BMH 100 3T	BMH 140 1P	
Подключаемый	і сервопреобра	зователь Lexium 32		LXM 32•D18M2	LXM 32•D30M2			
Частота коммутации КГ			кГц	8				
Ломент	Длительный п скорости	ри нулевой $\mathbf{M}_{\scriptscriptstyle{0}}$	Н-м	3.4	6	8.2	10.3	
	Пиковый при н	нулевой скорости M _{мах}	Н-м	10.2	18.4	22.8	30.8	
Номинальная	Номинальный	момент	Н-м	2.8	4.6	5.6	6.9	
рабочая точка	Номинальная	скорость	об/мин	3000		2500 2000		
	Номинальная серводвигате	мощность на выходе пя	Вт	900	1450			
Максимальный ток			А, действ.	19.4	30	30 29.8		
Характеристи	ки серводвиг	ателя						
Максимальная м настота вращени			об/мин	6000			4000	
Постоянные (при 120°C)	Момента		H·м/A, действ.	0.67	0.72	0.851	1.2	
	Обратной ЭДО		В, действ./ 1000 об/мин	43.3	46.2	54.8	77.4	
Ротор	Число полюсо	В		10				
	Инерция	Без тормоза J _m	KГ∙СМ ²	3.19	6.28	9.37	16.46	
		С тормозом J _m	кг•см²	3.68	6.77	10.3	17.96	
Статор	Сопротивлени	е (межфазное)	Ом	1.19	0.54	0.47	0.69	
(при 20°C)	Индуктивност	ь (межфазная)	мГн	5.3	2.7	3	6.7	

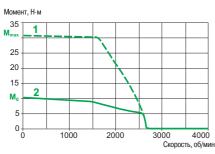

Серводвигатель ВМН 100 1Т

С сервопреобразователем LXM 32•D18M2

Момент, Н⋅м 12 2 0 6000 2000 4000


Серводвигатель ВМН 100 2Т

С сервопреобразователем LXM 32. ФD30M2


Серводвигатель ВМН 100 ЗТ

С сервопреобразователем LXM 32. ■ D30M2

Серводвигатель ВМН 140 1Р

С сервопреобразователем LXM 32•D30M2

- Пиковый момент
- Длительный момент

Серводвигатели ВМН Трехфазное напряжение питания 400 В

Тип серводвига	ателя			BMH 070 1P		BMH 070 2P	BMH 070 3P
Подключаемый сервопреобразователь Lexium 32				LXM 32•U60N4	LXM 32•D12	N4	LXM 32•D18N4
астота коммут	ации		кГц	8			
Ломент	Длительный пр скорости	ои нулевой М о	Н-м	1.2	1.4	2.5	3.4
	Пиковый при н	улевой скорости М _{мах}	Н-м	4.2		7.4	10.2
Іоминальная	Номинальный	момент	Н∙м	1.1	1.3	2.2	2.4
абочая точка	Номинальная (скорость	об/мин	3000	5000	3000	5000
	Номинальная м	мощность на выходе ия	Вт	350	700		1300
Лаксимальный	ток		А, действ.	6		9.7	12.6
Характеристі	ики серводвиг	ателя					
Лаксимальная м астота вращен			об/мин	8000			
Постоянные при 120°C)	Момента	Момента		0.79		0.84	0.87
	Обратной ЭДС		В, действ./ 1000 об/мин	50.72		54.08	55.8
отор	Число полюсов			10		<u>. </u>	
	Инерция	Без тормоза Ј	KГ∙СМ ²	0.59		1.13	1.67
		С тормозом J _m	KГ∙СМ ²	0.7		1.24	1.78
татор	Сопротивлени	Сопротивление (межфазное)		8.3		3.8	2.65
при 20°C)	Индуктивность	(межфазная)	мГн	23.4		12.2	8.6
Характеристі	ики момента/с	корости					
Серводвигател	ь ВМН 070 1Р					Серводвигатель ВМН 07	0 2P
сервопреобра	зователем LXM	32•U60N4	С сервопреоб	бразователем LXM 32	●D12N4	С сервопреобразователе	м LXM 32•D12N4
Ломент. Н∙м			Момент, Н∙м			Момент. Н∙м	
4,5 M _{max} 3,5 3,0			4,5 M _{max} 3,5 3,0			M _{max} 1	

4000

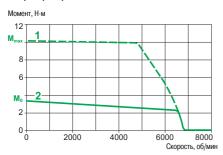
8000

6000

2000

4000

8000


6000

Серводвигатель ВМН 070 3Р

2000

0,5

С сервопреобразователем LXM 32 • D18N4

4000

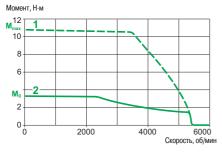
Пиковый момент Длительный момент

Описание:	Каталожные номера:	Размеры:
стр. 60	стр. 74	стр. 78

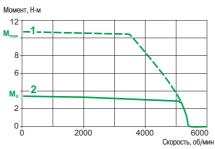
M₀ 0,5

0 0

000 8000 Скорость, об/мин

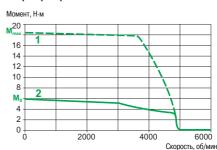

6000

Серводвигатели ВМН Трехфазное напряжение питания 400 В

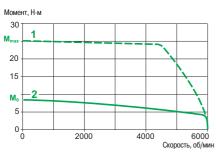

Тип серводвигателя				BMH 100 1P		BMH 100 2P	BMH 100 3P
Подключаемый	і сервопреобра	зователь Lexium 32		LXM 32•D12N4	LXM 32•D18N4		LXM 32•D30N4
Частота коммутации			кГц	8			'
Момент	Длительный г скорости	при нулевой М о	Н∙м	3.3	3.4	6.2	8.4
	Пиковый при	нулевой скорости M _{мах}	Н-м	10.8		18.4	25.1
Іоминальная	Номинальный	і момент	Н-м	1.9	3.1	3.9	5.2
рабочая точка	Номинальная	скорость	об/мин	4000		4000	5000
	Номинальная мощность на выходе серводвигателя		Вт	800	1300	1600	2700
Максимальный ток			А, действ.	11.9		18	29.1
Характеристи	ики серводви	гателя					
Максимальная м настота вращенн			об/мин	6000			
Постоянные [при 120°C)	Момента		H·м/A, действ.	1.1		1.2	1
	Обратной ЭДС		В, действ./ 1000 об/мин	70.3		π	63.5
Ротор	Число полюсо)B		10		·	
	Инерция	Без тормоза J _m	KΓ·CM ²	3.2		6.3	9.4
		С тормозом Ј _т	кг∙см²	3.68		6.77	10.3
Статор	Сопротивлен	ие (межфазное)	Ом	3.1		1.51	0.63
при 20°C)	Индуктивност	гь (межфазная)	мГн	13.9		7.5	4

Серводвигатель ВМН 100 1Р

С сервопреобразователем LXM 32. D12N4



С сервопреобразователем LXM 32 • D18N4


Серводвигатель ВМН 100 2Р

С сервопреобразователем LXM 32 • D18N4

Серводвигатель ВМН 100 3Р

С сервопреобразователем LXM 32•D30N4

- Пиковый момент
- 2 Длительный момент

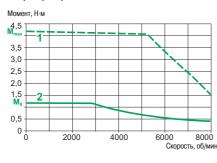
Описание:	Каталожные номера:	F
стр. 60	стр. 74	(

Серводвигатели ВМН Трехфазное напряжение питания 400 В

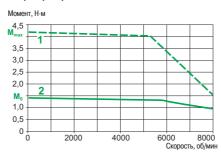
Тип серводвига	теля		BMH 140 1P	BMH 140 2P	BMH 140 3P	BMH 205 1P	BMH 205 2P	BMH 205 3P	
Подключаемый	сервопреобразователь Lexium 32		LXM32•D30N4	LXM 32•D72N4	ļ				
		ur.	0						
астота коммута		кГц	10.3	18.5	24	34.4	62.5	84	
Іомент	Длительный при нулевой \mathbf{M}_0 скорости	Н∙м							
	Пиковый при нулевой скорости M _{max}	Н-м	30.8	55.3	75	103.4	170	232	
оминальная абочая точка	Номинальный момент	Н-м	7.7	11.2	14.9	25.8	41.6	52.2	
Pacoran IORA	Номинальная скорость	об/мин	3000	1	Louis	2000	1500	1200	
	Номинальная мощность на выходе серводвигателя	Вт	2400	3500	4700	5400	6500		
аксимальный т	ток	А, действ.	29.8	57.4	62.3	72			
Карактеристи	ки серводвигателя								
Характеристики серводвигателя Максимальная механическая частота вращения		об/мин	4000			3800	3800		
остоянные іри 120°C)	Момента	H·м/A, действ.	1.2	1.1	1.34	1.6	2.6	3.5	
(Обратной ЭДС	В, действ./ 1000 об/мин	77.4	70.7	85.9	104	161	218	
отор	Число полюсов		10						
	Инерция Без тормоза J _m	KГ∙СМ ²	16.5	32	47.5	71.4	129	190	
	C тормозом J_{m}	KГ∙СМ ²	17.96	33.5	50.27	87.4	145	206	
			0.69	0.23	0.22	0.3		0.32	
	Сопротивление (межфазное)	Ом	0.09	0.20	-			0.02	
ри 20°С) (арактеристи	Индуктивность (межфазная) ки момента/скорости	мГн	6.7	3		5.9	5.6	6.9	
ри 20°C) (арактеристи Серводвигатель	Индуктивность (межфазная) ки момента/скорости	мГн		3	Серв	5.9 одвигатель ВМН		6.9	
ри 20°С) Карактеристи Серводвигатель сервопреобраз	Индуктивность (межфазная) ки момента/скорости ь ВМН 140 1Р	мГн	6.7 тель ВМН 140 2P	3	Серв	5.9 одвигатель ВМН вопреобразоват	1 140 3P	6.9	
ри 20°С) Карактеристи Серводвигатель сервопреобразомент, Н-м 35	Индуктивность (межфазная) ки момента/скорости ь ВМН 140 1Р	мГн Серводвига С сервопрео	6.7 тель ВМН 140 2P	3	Серв С сери Момент 80 г	5.9 одвигатель ВМН вопреобразоват	1 140 3P	6.9	
ри 20°С) Карактеристи Серводвигатель сервопреобразомент, Н-м 35	Индуктивность (межфазная) ки момента/скорости ь ВМН 140 1Р	мГн Серводвига С сервопрео	6.7 тель ВМН 140 2P	3	Серв С сері Момент М _{тах}	5.9 одвигатель ВМН вопреобразоват	1 140 3P	6.9	
ри 20°C) (арактеристи Серводвигатель сервопреобраз омент, Н·м 35 1 25	Индуктивность (межфазная) ки момента/скорости ь ВМН 140 1Р	мГн Серводвига С сервопрео Момент, Н-м 60 М _{мах}	6.7 тель ВМН 140 2P	3	Серв С сері Момент М _{тах}	5.9 одвигатель ВМН вопреобразоват	1 140 3P	6.9	
ри 20°C) (арактеристи Серводвигатель сервопреобраз омент, Н·м 35 1 25 20	Индуктивность (межфазная) ки момента/скорости ь ВМН 140 1Р	мГн Серводвига С сервопрео Момент, Н-м м _{max} 50 1	6.7 тель ВМН 140 2P	3	Серв С сері Момент М _{тах}	5.9 одвигатель ВМН вопреобразоват	1 140 3P	6.9	
Карактеристи Серводвигатель сервопреобраз омент, Н-м 35 1 25 20 15	Индуктивность (межфазная) ки момента/скорости ь ВМН 140 1Р	МГН Серводвига С сервопрео Момент, Н·м Мом то	6.7 тель ВМН 140 2P	3	Серв С сери Момент 80 60 50 40	5.9 одвигатель ВМН вопреобразовато , Н·м	1 140 3P	6.9	
ри 20°С) Карактеристи Серводвигатель сервопреобраз омент, Н-м 35 1 25 1 1 1 1 1 1 1 1 1 1 1 1 1	Индуктивность (межфазная) ки момента/скорости ь ВМН 140 1Р	МГН Серводвига С сервопрео Момент, Н·м М_max 50 1 1 40 30 М₀ 2	6.7 тель ВМН 140 2P	3	Серв С сери Момент М _{тах} 60 50	5.9 одвигатель ВМН вопреобразоват	1 140 3P	6.9	
ри 20°C) (арактеристи Серводвигатель сервопреобра: омент, Н·м 35 1 25 20 15	Индуктивность (межфазная) ки момента/скорости ь ВМН 140 1Р	МГН Серводвига С сервопрео Момент, Н·м Мом то	6.7 тель ВМН 140 2P	3	Серв С сері Момент М _{тах} — 60 50 40	5.9 одвигатель ВМН вопреобразовато , Н·м	1 140 3P	6.9	
ри 20°С) Карактеристи Серводвигатель сервопреобраз омент, Н-м 35 1 25 1 1 1 1 1 1 1 1 1 1 1 1 1	Индуктивность (межфазная) ики момента/скорости в ВМН 140 1Р вователем LXM 32•D30N4	МГН Серводвига С сервопрео Момент, Н-м М 60	6.7 тель ВМН 140 2P	3 32 • D72N4	Серв С сері Момент 80 м М _{тах} 60 40 40	5.9 одвигатель ВМН вопреобразовато , Н·м	1140 3Р елем LXM 32•D7	2N4 2N4	
Характеристи Серводвигатель сервопреобраз юмент, H-м 35 1 2 20 15 Мо 2	Индуктивность (межфазная) ВКИ МОМЕНТА/СКОРОСТИ В ВМН 140 1Р ВОВАТЕЛЕМ LXM 32●D30N4 ОО 2000 3000 4000 Скорость, об/м	МГН Серводвига С сервопрео Момент, Н-м М 60 40 30 40 10 0 0 ин	6.7 тель ВМН 140 2Р бразователем LXN	3 32 • D72N4	Серв С сери Момент 80 М _{тах} 60 50 40 40 40 0 0	5.9	1140 3Р елем LXM 32•D7	2N4 2N4	
Карактеристи Серводвигатель сервопреобраз омент, Н-м 35 1 25 0 10 Серводвигатель	Индуктивность (межфазная) ВКИ МОМЕНТА/СКОРОСТИ В ВМН 140 1Р ВОВАТЕЛЕМ LXM 32●D30N4 ОО 2000 3000 4000 Скорость, об/м	МГН Серводвига С сервопрео Момент, Н-м М 60 40 40 40 40 40 40 40 40 40 40 40 40 40	6.7 тель ВМН 140 2Р бразователем LXM	3 32 ● D72N4 3000 CKOPOCTE	Серв С сери Момент 80 М _{тах} 60 50 40 40 0 0 0 0 0	5.9 одвигатель ВМН вопреобразовате ; Н·м 1000 одвигатель ВМН	1140 3Р елем LXM 32•D7	2N4 2N4 2N4 2N4	
Характеристи Серводвигатель сервопреобраз монт, Н-м 35	Индуктивность (межфазная) Ки момента/скорости В ВМН 140 1Р Зователем LXM 32 ● D30N4 00 2000 3000 4000 Скорость, об/м	МГН Серводвига С сервопрео Момент, Н-м М 60 40 40 40 40 40 40 40 40 40 40 40 40 40	6.7 тель ВМН 140 2Р бразователем LXM 1000 2000	3 32 ● D72N4 3000 CKOPOCTE	Серв С сери Момент 80 М _{тах} 60 50 40 40 0 0 0 0 0	5.9 одвигатель ВМН вопреобразовате 1000 одвигатель ВМН вопреобразовате	1140 3Р елем LXM 32•D7 2000 з	2N4 2N4 2N4 4000 4000 Скорость, об/ми	
Характеристи Серводвигатель сервопреобраз юмент, Н-м 35	Индуктивность (межфазная) Ки момента/скорости В ВМН 140 1Р Зователем LXM 32 ● D30N4 00 2000 3000 4000 Скорость, об/м	Серводвига С сервопрео Момент, Н-м Момент, Н-м 40 30 Момент Серводвига С серводвига С сервопрео	6.7 тель ВМН 140 2Р бразователем LXM 1000 2000	3 32 ● D72N4 3000 CKOPOCTE	Серв С сері Момент 60 50 40 40 400 0,06/мин	5.9 одвигатель ВМН вопреобразовате 1000 одвигатель ВМН вопреобразовате	1140 3Р елем LXM 32•D7 2000 з	2N4 2N4 2N4 2N4	
Характеристи Серводвигатель сервопреобраз юмент, Н-м 35	Индуктивность (межфазная) Ки момента/скорости В ВМН 140 1Р Зователем LXM 32 ● D30N4 00 2000 3000 4000 Скорость, об/м	Серводвига С сервопрео Момент, Н-м Момент, Н-м 40 30 40 30 Момент, Н-м Серводвига С сервопрео Момент, Н-м 180 Момент, Н-м	6.7 тель ВМН 140 2Р бразователем LXM 1000 2000	3 32 ● D72N4 3000 CKOPOCTE	Серв С сери Момент 80 М _{тах} 60 50 40 40 40 0 0,06/мин	5.9 одвигатель ВМН вопреобразовате 1000 одвигатель ВМН вопреобразовате	1140 3Р елем LXM 32•D7 2000 з	2N4 2N4 2N4 4000 4000 Скорость, об/ми	
Серводвигатель сервопреобраз Вомент, Н-м 25 20 15 0 0 10 Серводвигатель сервопреобраз	Индуктивность (межфазная) Ки момента/скорости В ВМН 140 1Р Зователем LXM 32 ● D30N4 00 2000 3000 4000 Скорость, об/м	МГН Серводвига С сервопрео Момент, Н-м 40 30 Момент, Н-м Серводвига С сервопрео Момент, Н-м	6.7 тель ВМН 140 2Р бразователем LXM 1000 2000	3 32 ● D72N4 3000 CKOPOCTE	Серв С сері Момент Мо 20 10 4000 0,06/мин Серв С сері Момент 250 М _{тах} 200	5.9 одвигатель ВМН вопреобразовато , Н-м 1 1 2 1000 одвигатель ВМН вопреобразовато , Н-м	1140 3Р елем LXM 32•D7 2000 з	2N4 2N4 2N4 4000 4000 Скорость, об/ми	
Характеристи Серводвигатель сервопреобраз Момент, Н-м 35 25 20 15 Мо 2 Серводвигатель сервод	Индуктивность (межфазная) Ки момента/скорости В ВМН 140 1Р Зователем LXM 32 ● D30N4 00 2000 3000 4000 Скорость, об/м	Серводвига С сервопрео Момент, Н-м Серводвига С сервопрео Момент, Н-м Серводвига С сервопрео Момент, Н-м 180 М _{тах} 110 120 100	6.7 тель ВМН 140 2Р бразователем LXM 1000 2000	3 32 ● D72N4 3000 CKOPOCTE	Серв С сери Момент 80 50 40 40 40 40 40 0 0 0, об/мин	5.9 одвигатель ВМН вопреобразовато , Н-м 1 1 2 1000 одвигатель ВМН вопреобразовато , Н-м	1140 3Р елем LXM 32•D7 2000 з	2N4 2N4 2N4 2N4	
Характеристи Серводвигатель сервопреобраз момент, Н-м 25 0 10 Серводвигатель сервопреобраз момент, Н-м 20 10 Серводвигатель сервопреобраз момент, Н-м 20 11 80 60	Индуктивность (межфазная) Ки момента/скорости В ВМН 140 1Р Зователем LXM 32 ● D30N4 00 2000 3000 4000 Скорость, об/м	Серводвига С сервопрео Момент, Н-м Момент, Н-м Момент, Н-м Момент, Н-м Серводвига С сервопрео Момент, Н-м 180 Мимах 110 120 100 80 2	6.7 тель ВМН 140 2Р бразователем LXM 1000 2000	3 32 ● D72N4 3000 CKOPOCTE	Серв С сері Момент 80 М _{тах} 60 50 40 40 400 0,06/мин Серв С сері Момент 200 150	5.9 одвигатель ВМН вопреобразовато доло одвигатель ВМН вопреобразовато доло одвигатель ВМН вопреобразовато доло доло одвигатель ВМН вопреобразовато доло одвигатель ВМН вопреобразовато доло одвигатель ВМН вопреобразовато	1140 3Р елем LXM 32•D7 2000 з	2N4 2N4 2N4 2N4	
Карактеристи Серводвигатель сервопреобраз омент, Н-м 35	Индуктивность (межфазная) Ки момента/скорости В ВМН 140 1Р Зователем LXM 32 ● D30N4 00 2000 3000 4000 Скорость, об/м	Серводвига С сервопрео Момент, Н-м 40 30 40 10 0 0 0 0 0 0 0 0 0 0 0	6.7 тель ВМН 140 2Р бразователем LXM 1000 2000	3 32 ● D72N4 3000 CKOPOCTE	Серв С сері Момент 4000 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.9 одвигатель ВМН вопреобразовато , Н-м 1 1 2 1000 одвигатель ВМН вопреобразовато , Н-м	1140 3Р елем LXM 32•D7 2000 з	2N4 2N4 2N4 2N4	
Характеристи Серводвигатель сервопреобраз момент, Н-м 25 0 10 Серводвигатель сервопреобраз момент, Н-м 20 10 Серводвигатель сервопреобраз момент, Н-м 20 11 80 60	Индуктивность (межфазная) Ки момента/скорости В ВМН 140 1Р Зователем LXM 32 ● D30N4 00 2000 3000 4000 Скорость, об/м	Серводвига С сервопрео Момент, Н-м Момент, Н-м Момент, Н-м Момент, Н-м Серводвига С сервопрео Момент, Н-м 180 Мимах 110 120 100 80 2	6.7 тель ВМН 140 2Р бразователем LXM 1000 2000	3 32 ● D72N4 3000 CKOPOCTE	Серв С сері Момент 80 М _{тах} 60 50 40 40 400 0,06/мин Серв С сері Момент 200 150	5.9 одвигатель ВМН вопреобразовато доло одвигатель ВМН вопреобразовато доло одвигатель ВМН вопреобразовато доло доло одвигатель ВМН вопреобразовато доло одвигатель ВМН вопреобразовато доло одвигатель ВМН вопреобразовато	1140 3Р елем LXM 32•D7 2000 з	2N4 2N4 2N4 4000 4000 Скорость, об/ми	

- Пиковый момент
- Пиковый момент
 Длительный момент

Описание: Размеры: стр. 78 Каталожные номера: стр. 74

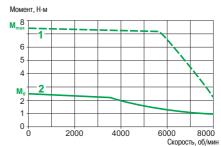

Серводвигатели ВМН Трехфазное напряжение питания 480 В

Тип серводвига	теля			BMH 070 1P		BMH 070 2P	BMH 070 3P
Подключаемый	сервопреобра	азователь Lexium 32		LXM 32•U60N4	LXM 32•D12N4		LXM 32●D18N4
Настота коммута	ции		кГц	8			
Момент	Длительный г скорости	при нулевой $\mathbf{M}_{\scriptscriptstyle{0}}$	Н-м	1.2	1.4	2.5	3.4
	- Пиковый при нулевой скорости М _{ма}		Н-м	4.2		7.4	10.2
Номинальная	Номинальный	й момент	Н-м	1.1	1.3	2.2	2.4
абочая точка Номинальная (скорость	об/мин	3000	5000	3000	5000
	Номинальная мощность на выходе серводвигателя		Вт	350	700		1300
Лаксимальный ток А			А, действ.	9.7		9.7	12.6
Характеристи	ки серводви	гателя					
Максимальная м настота вращени			об/мин	8000			
Постоянные (при 120°C)	Момента		H·м/A, действ.	0.79 0.84		0.84	0.87
	Обратной ЭД	C	В, действ./ 1000 об/мин	50.72 54.08		54.08	55.8
Ротор	Число полюсо	ОВ		10			
	Инерция	Без тормоза J _m	KГ∙СМ ²	0.59		1.13	1.67
		С тормозом Ј _т	KГ∙СМ ²	0.7		1.24	1.78
Статор	Сопротивлен	ие (межфазное)	Ом	8.3		3.8	2.65
(при 20°C)	Индуктивность (межфазная)		мГн	23.4		12.2	8.6

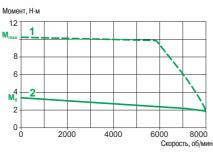

Характеристики момента/скорости

Серводвигатель ВМН 070 1Р

С сервопреобразователем LXM 32 • U60N4

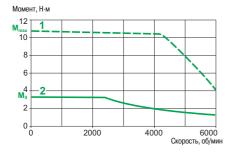


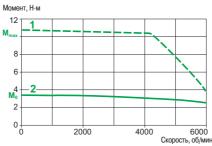
С сервопреобразователем LXM 32. D12N4

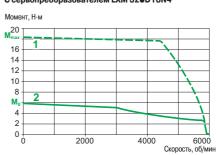

Серводвигатель ВМН 070 2Р

С сервопреобразователем LXM 32. D12N4

Серводвигатель ВМН 070 3Р


С сервопреобразователем LXM 32 • D18N4




- 1 Пиковый момент
- Длительный момент

Серводвигатели ВМН Трехфазное напряжение питания 480 В

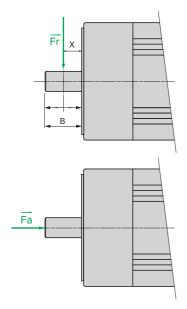
Тип серводвига	теля			BMH 100 1P		BMH 100 2P	BMH 100 3P
Подключаемый	сервопреобра	азователь Lexium 32		LXM 32• D12N4	LXM 32• D18N4		LXM 32● D30N4
Частота коммута	щии		кГц	8			
Момент	Длительный скорости	при нулевой	Н∙м	3.3	3.4	6.2	8.4
	Пиковый при	нулевой скорости M _{мах}	Н∙м	10.8		18.4	25.1
Номинальная	Номинальны	й момент	Н-м	1.9	3.1	3.9	5.2
рабочая точка	Номинальная	я скорость	об/мин	4000			5000
	Номинальная серводвигате	я мощность на выходе еля	Вт	800 1300		1600	2700
Максимальный ток			А, действ.	11.9		18	29.1
Характеристи	ки серводви	гателя					
Максимальная механическая частота вращения		об/мин	6000				
Постоянные (при 120°С)	Момента		H·м/A, действ.	1.1		1.2	1
	Обратной ЭД	l(C	В, действ./ 1000 об/мин	70.3		77	63.5
Ротор	Число полюс	ОВ		10			
	Инерция	Без тормоза J _m	KΓ•CM ²	3.2		6.3	9.4
		С тормозом J _m	K Г∙СМ ²	3.68		6.77	10.3
Статор	Сопротивлен	ие (межфазное)	Ом	3.1		1.51	0.63
при 20°C)	Индуктивнос	ть (межфазная)	мГн	13.9		7.5	4
Характеристи	ки момента/	/скорости					
Серводвигател	BMH 100 1P					Серводвигатель ВМН 10	0 2P
С сервопреобра	зователем LXN	// 32eD12N4	С сервопреоб	бразователем LXM 3	2•D18N4	С сервопреобразователе	M LXM 32 D18N4



Серводвигатель ВМН 100 3Р

С сервопреобразователем LXM 32 • D30N4

- Пиковый момент
- 2 Длительный момент


Размеры: стр. 78 Описание: Каталожные номера: стр. 74 стр. 60

Серводвигатели ВМН Трехфазное напряжение питания 480 В

Тип серводвига	теля		BMH 140 1P	BMH 140 2P	BMH 140 3P	BMH 205 1P	BMH 205 2P	BMH 205 3P
Подключаемый	сервопреобразователь Lexium 32		LXM 32● D30N4	LXM 32● D72N4				
астота коммута	эции	кГц	8					
Іомент	Длительный при нулевой ${\bf M_0}$ скорости	Н-м	10.3	18.5	24	34.4	62.5	84
	Пиковый при нулевой скорости М _{мах}	Н∙м	30.8	55.3	75	103.4	170	232
оминальная	Номинальный момент	Н∙м	7.7	11.2	14.9	25.8	41.6	52.2
абочая точка	Номинальная скорость	об/мин	3000	•		2000	1500	1200
Номинальная мощность на выходе серводвигателя Вт		Вт	2400	3500	4700	5400	6500	
lаксимальный т	гок	А, действ.	29.8	57.4	62.3	72		
Карактеристи	іки серводвигателя							
Іаксимальная м астота вращени	иеханическая	об/мин	4000			3800		
остоянные при 120°C)	Момента	H·м/A, действ.	1.2	1.1	1.34	1.6	2.6	3.5
	Обратной ЭДС	В, действ./ 1000 об/мин	77.4	70.7	85.9	104	161	218
отор	Число полюсов		10					
	Инерция Без тормоза J _m	K Г∙СМ ²	16.5	32	47.5	71.4	129	190
	С тормозом J _m	KГ•CM ²	17.96	33.5	50.27	87.4	145	206
татор	Сопротивление (межфазное)	Ом	0.69	0.23	0.22	0.3		0.32
	Индуктивность (межфазная)	мГн	6.7	3		5.9	5.6	6.9
при 20°C)		мГн		3		5.9	5.6	6.9
іри 20°С) Характерист и	іки момента/скорости		6.7		000			6.9
іри 20°С) Карактерист и Серводвигателі	іки момента/скорости ь ВМН 140 1Р	Серводвига	6.7 тель ВМН 140 2F			рводвигатель ВМІ	H 140 3P	
при 20°С) Характерист и Серводвигателі сервопреобра:	іки момента/скорости	Серводвига С сервопрео	6.7		C ce	оводвигатель ВМІ рвопреобразоват	H 140 3P	
ри 20°С) Карактеристи Серводвигатели сервопреобра: омент, Н-м	іки момента/скорости ь ВМН 140 1Р	Серводвига С сервопрео	6.7 тель ВМН 140 2F		С се	рводвигатель ВМІ	H 140 3P	
ри 20°С) Карактеристи Серводвигателі сервопреобра: омент, Н-м 35	іки момента/скорости ь ВМН 140 1Р	Серводвига С сервопрео	6.7 тель ВМН 140 2F		C ce	оводвигатель ВМІ рвопреобразоват нт, Н-м	H 140 3P	
ри 20°C) (арактеристи Серводвигателі сервопреобра: омент, Н·м 35 1	іки момента/скорости ь ВМН 140 1Р	Серводвига С сервопрео	6.7 тель ВМН 140 2F		C ce Mome Mmax	оводвигатель ВМІ рвопреобразоват	H 140 3P	
ри 20°C) (арактеристи Серводвигателі сервопреобра: омент, Н·м 35 1 25	іки момента/скорости ь ВМН 140 1Р	Серводвига С сервопрео	6.7 тель ВМН 140 2F		C ce Mome 80 M _{max} 60	оводвигатель ВМІ рвопреобразоват нт, Н-м	H 140 3P	
ри 20°C) (арактеристи Серводвигателі сервопреобра: омент, Н·м 35 1 25	іки момента/скорости ь ВМН 140 1Р	Серводвига С сервопреом Момент, Н-м М 60 М 20 40	6.7 тель ВМН 140 2F		C ce Mome 800 Mmax 60 50	оводвигатель ВМІ рвопреобразоват нт, Н-м	H 140 3P	
ри 20°C) (арактеристи Серводвигателі сервопреобра: омент, Н-м 35 1 25 20 15	іки момента/скорости ь ВМН 140 1Р	Серводвига С сервопрео	6.7 тель ВМН 140 2F		C ce Mome 80 M _{max} 60 50 40	оводвигатель ВМІ рвопреобразоват нт, Н·м	H 140 3P	
ри 20°С) Карактеристи Серводвигателі сервопреобра: омент, Н-м 35 1 25 20 15	іки момента/скорости ь ВМН 140 1Р	Серводвига С сервопреом Момент, Н-м М 60	6.7 тель ВМН 140 2F		C ce Mome 800 Mmax 60 50	оводвигатель ВМІ рвопреобразоват нт, Н-м	H 140 3P	
ри 20°С) Карактеристи Серводвигателі сервопреобра: омент, Н-м 35 1 25 20 15	іки момента/скорости ь ВМН 140 1Р	Серводвига С сервопрео	6.7 тель ВМН 140 2F		C ce Mowe 80 M _{max} 60 50 40 M ₀	оводвигатель ВМІ рвопреобразоват нт, Н·м	H 140 3P	
ри 20°С) Карактеристи Серводвигателі сервопреобра: омент, Н-м 35 1 25 20 15 M ₀ 2	IKU МОМЕНТА/СКОРОСТИ Ь ВМН 140 1Р ЗОВАТЕЛЕМ LXM 32•D30N4	Серводвига С сервопрео Момент, Н-м М 60	6.7 тель ВМН 140 2F бразователем LX	(M 32•D72N4	C ce Mome 80 M _{max} 60 50 40 10 10 0	рводвигатель ВМІ рвопреобразоват нт, Н-м	H 140 3Р гелем LXM 32•D7	72N4
Карактеристи Серводвигатели сервопреобра: омент, H-м 35 1 25 20 15 M ₀ 2	IKU МОМЕНТА/СКОРОСТИ Ь ВМН 140 1Р ЗОВАТЕЛЕМ LXM 32•D30N4	Серводвига С сервопрео Момент, Н-м М 60 40 30 0 0	6.7 тель ВМН 140 2F	XM 32•D72N4	C ce Mome 80 M _{max} 60 50 40 10 0 0	оводвигатель ВМІ рвопреобразоват нт, Н·м	H 140 3Р гелем LXM 32•D7	72N4
Характеристи Серводвигатели сервопреобра: омент, H-м 35 1 25 20 15 Mo 2	IKИ МОМЕНТА/СКОРОСТИ В ВМН 140 1Р ЗОВАТЕЛЕМ LXM 32 ● D30N4 00 2000 3000 4000 Скорость, об/м	Серводвига С сервопреом Момент, Н-м М 60	6.7 тель ВМН 140 2F бразователем LX	CM 32 • D72N4 O0 3000 Ckopoc	С се Моме 80 М _{мах} 60 50 40 м ₀ 20 10 0 сть, об/мин	рводвигатель ВМІ рвопреобразоват нт, Н-м	H 140 3Р телем LXM 32•D7	72N4
Карактеристи Серводвигатели сервопреобра: омент, Н-м 35 1 25 0 10 10 Серводвигатели	IKИ МОМЕНТА/СКОРОСТИ В ВМН 140 1Р ЗОВАТЕЛЕМ LXM 32 ● D30N4 00 2000 3000 4000 Скорость, об/м	Серводвига С сервопреом Момент, н.м Момент, н.м 40 30 Момент денти и по	6.7 тель ВМН 140 2F бразователем LX 1000 200	M 32 ● D72N4 M 32 ● D72N4 M 3000 Cxopoo	С се Моме 80 М _{тах} 80 50 40 400 сть, об/мин	оводвигатель ВМІ рвопреобразоват нт, Н-м	H 140 3Р телем LXM 32◆D7 2000	72N4 3000 4000 Скорость, об/ми
Карактеристи Серводвигателі сервопреобра: омент, Н-м 35	ыки момента/скорости ь ВМН 140 1Р зователем LXM 32 • D30N4 00 2000 3000 4000 Скорость, об/м	Серводвига С сервопрео Момент, Н-м м 60 40 30 м 2 10 0 Серводвига С серводвига С сервопрео	6.7 тель ВМН 140 2F бразователем LX 1000 200	M 32 ● D72N4 M 32 ● D72N4 M 3000 Cxopoo	С се Моме 80 М _{тах} 60 50 40 0 10 Сть, об/мин	рводвигатель ВМІ рвопреобразоват нт, Н-м — 1 — 2 — 0 — 1000 рводвигатель ВМІ рвопреобразоват	H 140 3Р телем LXM 32◆D7 2000	72N4 3000 4000 Скорость, об/ми
Карактеристи Серводвигателі сервопреобра: омент, Н-м 35 1 25 20 15 0 10 Серводвигателі сервопреобра: омент, Н-м 20 4	ыки момента/скорости ь ВМН 140 1Р зователем LXM 32 • D30N4 00 2000 3000 4000 Скорость, об/м	Серводвига С сервопрео Момент, Н-м Мом 2 10 0 Ин Серводвига С сервопрео Момент, Н-м 180	6.7 тель ВМН 140 2F бразователем LX 1000 200	M 32 ● D72N4 M 32 ● D72N4 M 3000 Cxopoo	С се Моме Мишки М	рводвигатель ВМІ рвопреобразоват нт, Н-м 2 1 1000 рводвигатель ВМІ рвопреобразоват нт, Н-м	H 140 3Р телем LXM 32◆D7 2000	72N4 3000 4000 Скорость, об/ми
Карактеристи Серводвигателі сервопреобра: омент, Н-м 35	ыки момента/скорости ь ВМН 140 1Р зователем LXM 32 • D30N4 00 2000 3000 4000 Скорость, об/м	Серводвига С сервопрео Момент, Н-м М м м м м м м м м м м м м м м м м м м	6.7 тель ВМН 140 2F бразователем LX 1000 200	M 32 ● D72N4 M 32 ● D72N4 M 3000 Cxopoo	С се, моме метором моме моме моме моме моме моме моме	рводвигатель ВМІ рвопреобразоват нт, Н-м 2 1 1000 рводвигатель ВМІ рвопреобразоват нт, Н-м	H 140 3Р телем LXM 32◆D7 2000	72N4 3000 4000 Скорость, об/ми
Характеристи Серводвигателі з 1	ыки момента/скорости ь ВМН 140 1Р зователем LXM 32 • D30N4 00 2000 3000 4000 Скорость, об/м	Серводвига С сервопрео Момент, Н-м М 60 50 10 0 0 Серводвига С сервопрео Момент, Н-м 180 М _{мах} 140	6.7 тель ВМН 140 2F бразователем LX 1000 200	M 32 ● D72N4 M 32 ● D72N4 M 3000 Cxopoo	С се Моме Мишки М	рводвигатель ВМІ рвопреобразоват нт, Н-м 2 1 1000 рводвигатель ВМІ рвопреобразоват нт, Н-м	H 140 3Р телем LXM 32◆D7 2000	72N4 3000 4000 Скорость, об/ми
Характеристи Серводвигателі сервопреобра: 10мент, Н-м 25 20 15 М 2 Серводвигателі серводвигателі серводвигателі серводвигателі	ыки момента/скорости ь ВМН 140 1Р зователем LXM 32 • D30N4 00 2000 3000 4000 Скорость, об/м	Серводвига С сервопрео Момент, Н-м м 60 м м м 2 10 0 ин Серводвига С сервопрео Момент, Н-м 180 м м м м м м м м м м м м м м м м м м	6.7 тель ВМН 140 2F бразователем LX 1000 200	M 32 ● D72N4 M 32 ● D72N4 M 3000 Cxopoo	С се, моме метором моме моме моме моме моме моме моме	рводвигатель ВМІ рвопреобразоват нт, Н-м 2 1 1000 рводвигатель ВМІ рвопреобразоват нт, Н-м	H 140 3Р телем LXM 32◆D7 2000	72N4 3000 4000 Скорость, об/ми
Характеристи Серводвигателі з 1	ыки момента/скорости ь ВМН 140 1Р зователем LXM 32 • D30N4 00 2000 3000 4000 Скорость, об/м	Серводвига С сервопрео Момент, Н-м М 60 40 30 40 30 М 2 10 0 0 0 0 0 0 0 0 0 0 0 0	6.7 тель ВМН 140 2F бразователем LX 1000 200	M 32 ● D72N4 M 32 ● D72N4 M 3000 Cxopoo	С се, моме метором моме моме моме моме моме моме моме	рводвигатель ВМІ рвопреобразоват нт, Н-м 2 1 1000 рводвигатель ВМІ рвопреобразоват нт, Н-м	H 140 3Р телем LXM 32◆D7 2000	72N4 3000 4000 Скорость, об/ми
Характеристи Серводвигатели сервопреобра: Омент, Н-м	ыки момента/скорости ь ВМН 140 1Р зователем LXM 32 • D30N4 00 2000 3000 4000 Скорость, об/м	Серводвига С сервопрео Момент, Н-м м 60 м м м 2 10 0 ин Серводвига С сервопрео Момент, Н-м 180 м м м м м м м м м м м м м м м м м м	6.7 тель ВМН 140 2F бразователем LX 1000 200	M 32 ● D72N4 M 32 ● D72N4 M 3000 Cxopoo	С се Моме Мишах Моме Мишах Моме Моме Моме Сть, об/мин Сер С се Моме 250 Мишах 200	рводвигатель ВМІ рвопреобразоват нт, Н-м 2 1 1000 рводвигатель ВМІ рвопреобразоват нт, Н-м	H 140 3Р телем LXM 32◆D7 2000	72N4 3000 4000 Скорость, об/ми
Характеристи Серводвигатели сервопреобра: 10мент, Н-м 35 25 0 0 10 Серводвигатели сервопреобра: 10мент, Н-м 20 10мент, Н-м 20 10мент, Н-м 20 10мент, Н-м 20 10мент, Н-м	ыки момента/скорости ь ВМН 140 1Р зователем LXM 32 • D30N4 00 2000 3000 4000 Скорость, об/м	Серводвига С сервопрео Момент, Н-м м 60 40 30 40 10 0 Серводвига С серводвига С серводвига С серводвига С серводвига О момент, Н-м 180 М м 2 100 100 80 2	6.7 тель ВМН 140 2F бразователем LX 1000 200	M 32 ● D72N4 M 32 ● D72N4 M 3000 Cxopoo	С се Моме 250 Мимах 200 150 100 Мо	рводвигатель ВМІ рвопреобразоват нт, Н-м — 1 — 1 — 2 — 1 000 оводвигатель ВМІ рвопреобразоват нт, Н-м — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 —	H 140 3Р телем LXM 32◆D7 2000	72N4 3000 4000 Скорость, об/ми
Характеристи Серводвигатели сервопреобра: Момент, Н-м 35 1 25 0 10 Серводвигатели сервопреобра: сервопреобра: серводвигатели серводвигатели серводвигатели серводвигатели сервопреобра:	ыки момента/скорости ь ВМН 140 1Р зователем LXM 32 • D30N4 00 2000 3000 4000 Скорость, об/м	Серводвига С сервопрео Момент, Н-м М м м м м м м м м м м м м м м м м м м	6.7 тель ВМН 140 2F бразователем LX 1000 200	M 32 ● D72N4 M 32 ● D72N4 M 3000 Cxopoo	Ссе Моме 80 М _{мых} 80 м м _{мых} 80 40 м м м м м м м м м м м м м м м м м м	рводвигатель ВМІ рвопреобразоват нт, Н-м — 1 — 1 — 2 — 1 000 оводвигатель ВМІ рвопреобразоват нт, Н-м — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 —	H 140 3Р телем LXM 32◆D7 2000	72N4 3000 4000 Скорость, об/ми

¹ Пиковый момент

2 Длительный момент

Допустимые радиальные и осевые усилия на валу двигателя

Даже при оптимальных условиях эксплуатации серводвигателей их срок службы ограничивается сроком службы подшипников.

Условия	
Номинальный срок службы подшипников (1)	L _{10h} = 20000 часов
Температура окружающей среды (температура подшипников 100°C)	40°C
Точка приложения усилий	Fr прикладывается в середине выступающего конца вала X = B/2 (размер B, см. стр. 78)

(1) В часах, с вероятностью отказа 10%.

Должны соблюдаться следующие условия:

		Максимально	е радиальное у	льное усилие Fr				
	об/мин	1000	2000	3000	4000	5000	6000	
BMH 0701	Н	660	520	460	410	380	360	
BMH 0702	Н	710	560	490	450	410	390	
BMH 0703	Н	730	580	510	460	430	400	
BMH 1001	Н	900	720	630	570	530	-	
BMH 1002	Н	990	790	690	620	580	-	
BMH 1003	Н	1050	830	730	660	610	-	
BMH 1401	Н	1930	1530	1340	-	-	-	
BMH 1402	Н	2240	1780	1550	-	-	-	
BMH 1403	Н	2420	1920	1680	-	-	-	
BMH 2051	Н	3730	2960	2580	-	-	-	
BMH 2052	Н	4200	3330	2910	-	-	-	
BMH 2053	Н	4500	3570	3120	-	-	-	
	BMH 0702 BMH 0703 BMH 1001 BMH 1002 BMH 1003 BMH 1401 BMH 1402 BMH 1403 BMH 2051 BMH 2052	BMH 0701	BMH 0701	BMH 0701	BMH 0701	BMH 0701	BMH 0701	

Описание: Каталожные номера: стр. 74

Размеры: стр. 78

(продолжение)

Предварительно собранные соединительные кабели	и с разъемом на			1			
Тип соединительного кабеля		VW3 M5 101 R●●●	VW3 M5 102 R●●●	VW3 M5 103 R•••			
Внешняя оболочка, изоляция		Полиуретан оранжевого цвета RA	L 2003, TPM или PP/PE				
Емкость	пФ/м	< 70 (проводник/экран)	<u> </u>				
Количество проводников (экранированных)		$[(4 \times 1.5 \text{ mm}^2) + (2 \times 1 \text{ mm}^2)]$	$[(4 \times 2.5 \text{ mm}^2) + (2 \times 1 \text{ mm}^2)]$	$[(4 \times 4 \text{ mm}^2) + (2 \times 1 \text{ mm}^2)]$			
Тип разъема		1 промышленный разъем M23 со 1 свободный конец с гибкими вы сервопреобразователя		1 промышленный разъем М40 (серводвигатель) и 1 свободны конец (сервопреобразователь)			
Внешний диаметр	мм	12 ± 0.2	14.3 ± 0.3	16.3 ± 0.3			
Радиус изгиба	ММ	90, пригоден для шлейфового соединения и кабеленесущих систем	110, пригоден для шлейфового соединения и кабеленесущих систем	125, пригоден для шлейфового соединения и кабеленесущих систем			
Рабочее напряжение	В	600					
Максимальная длина	М	75 (1)					
Рабочая температура	°C	- 40+ 90 (стационарная прокладка), - 20+ 80 (подвижная прокладка)					
Сертификаты		UL, CSA, VDE, C€, DESINA					
Кабели без разъемов							
Тип кабеля		VW3 M5 301 R●●●●	VW3 M5 302 R●●●●	VW3 M5 303 R••••			
Внешняя оболочка, изоляция		Полиуретан оранжевого цвета RA	L 2003, TPM или PP/PE				
мкость	пФ/м	< 70 (проводник/экран)					
(оличество проводников (экранированных)		[(4 x 1.5 mm²) + (2 x 1 mm²)]	$[(4 \times 2.5 \text{ mm}^2) + (2 \times 1 \text{ mm}^2)]$	$[(4 \times 4 \text{ MM}^2) + (2 \times 1 \text{ MM}^2)]$			
Гип разъема		Отсутствует, см. стр. 105	, , , , , , , , , , , , , , , , , , , ,				
Внешний диаметр	мм	12±0.2	14.3 ± 0,3	16.3 ± 0.3			
Радиус изгиба	мм	90, пригоден для шлейфового соединения и кабеленесущих систем	110, пригоден для шлейфового соединения и кабеленесущих систем	125, пригоден для шлейфового соединения и кабеленесущих систем			
Рабочее напряжение	В	600					
·	М	100					
			200 + 90 (2022) DVA	anvo)			
Максимальная длина Рабочая температура	°C	- 40+ 90 (стационарная проклад	цка), - 20+ 80 (подвижная прокла	эдка)			
Рабочая температура Сертификаты	°C	- 40+ 90 (стационарная проклад UL, CSA, VDE, C €, DESINA		,			
Рабочая температура Сертификаты Характеристики кабелей цепей управлени	°С ия для соедиі	- 40+ 90 (стационарная проклад UL, CSA, VDE, C€, DESINA НЕНИЯ СЕРВОДВИГАТЕЛ Я	я и сервопреобразов	,			
Рабочая температура Сертификаты	°С ия для соедиі	- 40+ 90 (стационарная проклад UL, CSA, VDE, C€, DESINA нения серводвигателя мами (для серводвигателя	я и сервопреобразов	,			
Рабочая температура Сертификаты Характеристики кабелей цепей управлени	°С ия для соедиі	- 40+ 90 (стационарная проклад UL, CSA, VDE, C€, DESINA Нения серводвигателя мами (для серводвигателя VW3 M8 102 R●●●	я и сервопреобразов	,			
Рабочая температура Сертификаты Характеристики кабелей цепей управлени Предварительно собранные соединительные кабели Тип соединительного кабеля	°С ия для соедиі	- 40+ 90 (стационарная проклад UL, CSA, VDE, C€, DESINA нения серводвигателя мами (для серводвигателя	я и сервопреобразов	,			
Рабочая температура Сертификаты Характеристики кабелей цепей управлен и Предварительно собранные соединительные кабели	°С ия для соедиі	- 40+ 90 (стационарная проклад UL, CSA, VDE, C€, DESINA Нения серводвигателя мами (для серводвигателя VW3 M8 102 R●●●	я и сервопреобразов и сервопреобразователя)	,			
Рабочая температура Сертификаты Характеристики кабелей цепей управлени Предварительно собранные соединительные кабели Тип соединительного кабеля Гип датчика положения ротора Знешняя оболочка, изоляция	°С ия для соедиі	- 40+ 90 (стационарная проклад UL, CSA, VDE, C€, DESINA Нения серводвигателя мами (для серводвигателя WW3 M8 102 R●●● SinCos	я и сервопреобразов и сервопреобразователя) 018, полипропилен	,			
Рабочая температура Сертификаты Характеристики кабелей цепей управлени Предварительно собранные соединительные кабели Тип соединительного кабеля Гип датчика положения ротора Внешняя оболочка, изоляция Количество проводников (экранированных)	°С ия для соедиі	- 40+ 90 (стационарная проклад UL, CSA, VDE, C€, DESINA Нения серводвигателя мами (для серводвигателя WW3 M8 102 R●●● SinCos	я и сервопреобразов и сервопреобразователя) 018, полипропилен	,			
Рабочая температура Сертификаты Характеристики кабелей цепей управлени Предварительно собранные соединительные кабели Тип соединительного кабеля Гип датчика положения ротора Внешняя оболочка, изоляция Количество проводников (экранированных) Внешний диаметр	°С ИЯ ДЛЯ СОЕДИІ И С ДВУМЯ РАЗЪЕМ	- 40+ 90 (стационарная проклад UL, CSA, VDE, C€, DESINA НЕНИЯ СЕРВОДВИГАТЕЛЯ МАМИ (ДЛЯ СЕРВОДВИГАТЕЛЯ VW3 M8 102 R●●● SinCos Полиуретан зеленого цвета RAL 6 [3 x (2 x 0.14 мм²) + 1 x (2 x 0.34 м 6.8 ± 0.2	я и сервопреобразов и сервопреобразователя) 018, полипропилен	ателя			
Рабочая температура Сертификаты Характеристики кабелей цепей управлени Предварительно собранные соединительные кабели Тип соединительного кабеля Гип датчика положения ротора Знешняя оболочка, изоляция Количество проводников (экранированных) Знешний диаметр Гип разъема	°С ИЯ ДЛЯ СОЕДИІ И С ДВУМЯ РАЗЪЕМ	- 40+ 90 (стационарная проклад UL, CSA, VDE, C€, DESINA НЕНИЯ СЕРВОДВИГАТЕЛЯ МАМИ (ДЛЯ СЕРВОДВИГАТЕЛЯ VW3 M8 102 R●●● SinCos Полиуретан зеленого цвета RAL 6 [3 x (2 x 0.14 мм²) + 1 x (2 x 0.34 м 6.8 ± 0.2	я и сервопреобразов и сервопреобразователя) 018, полипропилен м²)]	ателя			
Рабочая температура Сертификаты Характеристики кабелей цепей управлени Предварительно собранные соединительные кабели Тип соединительного кабеля Гип датчика положения ротора Внешняя оболочка, изоляция Количество проводников (экранированных) Внешний диаметр Гип разъема Иинимальный радиус изгиба	°С 19 для соедино по двумя разъем	-40+ 90 (стационарная проклад UL, CSA, VDE, C€, DESINA НЕНИЯ СЕРВОДВИГАТЕЛЯ ИМИ (ДЛЯ СЕРВОДВИГАТЕЛЯ УW3 МВ 102 R●●● SinCos Полиуретан зеленого цвета RAL 6 [З х (2 х 0.14 мм²) + 1 х (2 х 0.34 м 6.8 ± 0.2 1 промышленный разъем M23 (ди 68, пригоден для шлейфового сое 300 (0.14 мм² и 0.34 мм²)	я и сервопреобразов и сервопреобразователя) 018, полипропилен м²)]	ателя			
Рабочая температура Сертификаты Характеристики кабелей цепей управлени Предварительно собранные соединительные кабели Тип соединительного кабеля Гип датчика положения ротора Внешняя оболочка, изоляция Количество проводников (экранированных) Внешний диаметр Гип разъема Минимальный радиус изгиба Рабочее напряжение	°С 19 для соедино по двумя разъем мм	-40+ 90 (стационарная проклад UL, CSA, VDE, C€, DESINA НЕНИЯ СЕРВОДВИГАТЕЛЯ МАМИ (ДЛЯ СЕРВОДВИГАТЕЛЯ WW3 M8 102 R●●● SinCos Полиуретан зеленого цвета RAL 6 [3 x (2 x 0.14 мм²) + 1 x (2 x 0.34 м 6.8 ± 0.2 1 промышленный разъем M23 (дл 68, пригоден для шлейфового сое	я и сервопреобразов и сервопреобразователя) 018, полипропилен м²)]	ателя			
Рабочая температура Сертификаты Характеристики кабелей цепей управлени Предварительно собранные соединительные кабели Тип соединительного кабеля Гип датчика положения ротора Внешняя оболочка, изоляция Количество проводников (экранированных) Внешний диаметр Гип разъема Минимальный радиус изгиба Рабочее напряжение Максимальная длина	°С ИЯ ДЛЯ СОЕДИІ И С ДВУМЯ РАЗЪЕН ММ ММ В	- 40+ 90 (стационарная проклад UL, CSA, VDE, C€, DESINA Нения серводвигателя из мами (для серводвигателя W3 м8 102 R●●● SinCos Полиуретан зеленого цвета RAL 6 [3 x (2 x 0.14 мм²) + 1 x (2 x 0.34 м 6.8 ± 0.2 1 промышленный разъем M23 (ди 68, пригоден для шлейфового сое 300 (0.14 мм² и 0.34 мм²) 75 (1)	я и сервопреобразов и сервопреобразователя) 018, полипропилен м²)]	ателя			
Рабочая температура Сертификаты Жарактеристики кабелей цепей управлени Предварительно собранные соединительные кабели Тип соединительного кабеля Гип датчика положения ротора Внешняя оболочка, изоляция Количество проводников (экранированных) Внешний диаметр Гип разъема Минимальный радиус изгиба Рабочее напряжение Максимальная длина Рабочая температура	°С 19 ДЛЯ СОЕДИІ 10 С ДВУМЯ РАЗЪЕН ММ ММ В М	- 40+ 90 (стационарная проклад UL, CSA, VDE, C€, DESINA Нения серводвигателя из мами (для серводвигателя W3 м8 102 R●●● SinCos Полиуретан зеленого цвета RAL 6 [3 x (2 x 0.14 мм²) + 1 x (2 x 0.34 м 6.8 ± 0.2 1 промышленный разъем M23 (ди 68, пригоден для шлейфового сое 300 (0.14 мм² и 0.34 мм²) 75 (1)	я и сервопреобразов и сервопреобразователя) 018, полипропилен м²)] вигатель) и1 разъем RJ45 (преобрадинения и кабеленесущих систем	ателя			
Рабочая температура Сертификаты Жарактеристики кабелей цепей управлени Предварительно собранные соединительные кабели Тип соединительного кабеля Гип датчика положения ротора Внешняя оболочка, изоляция Количество проводников (экранированных) Внешний диаметр Гип разъема Минимальный радиус изгиба Рабочее напряжение Максимальная длина Рабочая температура	°С 19 ДЛЯ СОЕДИІ 10 С ДВУМЯ РАЗЪЕН ММ ММ В М	-40+ 90 (стационарная проклад UL, CSA, VDE, C€, DESINA Нения серводвигателя мами (для серводвигателя W3 M8 102 R●●● SinCos Полиуретан зеленого цвета RAL 6 [3 x (2 x 0.14 мм²) + 1 x (2 x 0.34 м 6.8 ± 0.2 1 промышленный разъем M23 (ди 68, пригоден для шлейфового сое 300 (0.14 мм² и 0.34 мм²) 75 (1) -40+ 80 (стационарная прокла	я и сервопреобразов и сервопреобразователя) 018, полипропилен м²)] вигатель) и1 разъем RJ45 (преобрадинения и кабеленесущих систем	ателя			
Рабочая температура Сертификаты Характеристики кабелей цепей управлени Предварительно собранные соединительные кабели Тип соединительного кабеля Гип датчика положения ротора Внешняя оболочка, изоляция Количество проводников (экранированных) Внешний диаметр Гип разъема Минимальный радиус изгиба Рабочее напряжение Максимальная длина Рабочая температура Сертификаты Кабели без разъемов	°С 19 ДЛЯ СОЕДИІ 10 С ДВУМЯ РАЗЪЕН ММ ММ В М	-40+ 90 (стационарная проклад UL, CSA, VDE, C€, DESINA Нения серводвигателя мами (для серводвигателя W3 M8 102 R●●● SinCos Полиуретан зеленого цвета RAL 6 [3 x (2 x 0.14 мм²) + 1 x (2 x 0.34 м 6.8 ± 0.2 1 промышленный разъем M23 (ди 68, пригоден для шлейфового сое 300 (0.14 мм² и 0.34 мм²) 75 (1) -40+ 80 (стационарная прокла	я и сервопреобразов и сервопреобразователя) 018, полипропилен м²)] вигатель) и1 разъем RJ45 (преобрадинения и кабеленесущих систем	ателя			
Рабочая температура Сертификаты Жарактеристики кабелей цепей управлени Предварительно собранные соединительные кабели Тип соединительного кабеля Гип датчика положения ротора Внешняя оболочка, изоляция Количество проводников (экранированных) Внешний диаметр Гип разъема Иннимальный радиус изгиба Рабочее напряжение Максимальная длина Рабочая температура Сертификаты Кабели без разъемов Тип кабеля	°С 19 ДЛЯ СОЕДИІ 10 С ДВУМЯ РАЗЪЕН ММ ММ В М	-40+ 90 (стационарная проклад UL, CSA, VDE, C€, DESINA Нения серводвигателя W3 м8 102 R●●● SinCos Полиуретан зеленого цвета RAL 6 [3 x (2 x 0.14 мм²) + 1 x (2 x 0.34 м 6.8 ± 0.2 1 промышленный разъем M23 (ди 68, пригоден для шлейфового сое 300 (0.14 мм² и 0.34 мм²) 75 (1) -40+ 80 (стационарная прокла UL, CSA, VDE, C€, DESINA	я и сервопреобразов и сервопреобразователя) 018, полипропилен м²)] вигатель) и 1 разъем RJ45 (преобрадинения и кабеленесущих систем	ателя			
Рабочая температура Сертификаты Жарактеристики кабелей цепей управлени Предварительно собранные соединительные кабели Тип соединительного кабеля Гип датчика положения ротора Внешняя оболочка, изоляция Количество проводников (экранированных) Внешний диаметр Гип разъема Иинимальный радиус изгиба Рабочее напряжение Максимальная длина Рабочая температура Сертификаты Кабели без разъемов Тип кабеля Гип датчика положения ротора	°С 19 ДЛЯ СОЕДИІ 10 С ДВУМЯ РАЗЪЕН ММ ММ В М	- 40+ 90 (стационарная проклад UL, CSA, VDE, C€, DESINA Нения серводвигателя W3 м8 102 R●●● SinCos Полиуретан зеленого цвета RAL 6 [3 x (2 x 0.14 мм²) + 1 x (2 x 0.34 м 6.8 ± 0.2 1 промышленный разъем M23 (ди 68, пригоден для шлейфового сое 300 (0.14 мм² и 0.34 мм²) 75 (1) - 40+ 80 (стационарная прокла UL, CSA, VDE, C€, DESINA	я и сервопреобразов и сервопреобразователя) 018, полипропилен м²)] вигатель) и 1 разъем ВJ45 (преобрадинения и кабеленесущих систем динения, и кабеленесущих систем дка), - 20+ 80 (подвижная прокл	ателя			
Рабочая температура Сертификаты Жарактеристики кабелей цепей управлени Предварительно собранные соединительные кабели Тип соединительного кабеля Гип датчика положения ротора Внешняя оболочка, изоляция Количество проводников (экранированных) Внешний диаметр Гип разъема Минимальный радиус изгиба Рабочае напряжение Максимальная длина Рабочая температура Сертификаты Кабели без разъемов Тип кабеля Гип датчика положения ротора Внешняя оболочка, изоляция	°С 19 ДЛЯ СОЕДИІ 10 С ДВУМЯ РАЗЪЕН ММ ММ В М	- 40+ 90 (стационарная проклад UL, CSA, VDE, C€, DESINA Нения серводвигателя ими (для серводвигателя W3 м8 102 R●●● SinCos Полиуретан зеленого цвета RAL 6 [3 x (2 x 0.14 мм²) + 1 x (2 x 0.34 м 6.8 ± 0.2 1 промышленный разъем M23 (ди 68, пригоден для шлейфового сое 300 (0.14 мм² и 0.34 мм²) 75 (1) - 40+ 80 (стационарная прокла UL, CSA, VDE, C€, DESINA	я и сервопреобразов и сервопреобразователя) 018, полипропилен м²)] вигатель) и 1 разъем RJ45 (преобрадинения и кабеленесущих систем дка), - 20+ 80 (подвижная прокл	ателя			
Рабочая температура Сертификаты Жарактеристики кабелей цепей управлени Предварительно собранные соединительные кабели Тип соединительного кабеля Гип датчика положения ротора Внешняя оболочка, изоляция Количество проводников (экранированных) Внешний диаметр Гип разъема Минимальный радиус изгиба Рабочае напряжение Максимальная длина Рабочая температура Сертификаты Кабели без разъемов Тип кабеля Гип датчика положения ротора Внешняя оболочка, изоляция Количество проводников (экранированных)	°С 19 ДЛЯ СОЕДИІ 10 С ДВУМЯ РАЗЪЕН ММ ММ В М	- 40+ 90 (стационарная проклад UL, CSA, VDE, C€, DESINA Нения серводвигателя ими (для серводвигателя W3 м8 102 R●●● SinCos Полиуретан зеленого цвета RAL 6 [3 x (2 x 0.14 мм²) + 1 x (2 x 0.34 м 6.8 ± 0.2 1 промышленный разъем M23 (ди 68, пригоден для шлейфового сое 300 (0.14 мм² и 0.34 мм²) 75 (1) - 40+ 80 (стационарная прокла UL, CSA, VDE, C€, DESINA WW3 M8 222 R●●●● SinCos Полиуретан зеленого цвета RAL 6	я и сервопреобразов и сервопреобразователя) 018, полипропилен м²)] вигатель) и 1 разъем RJ45 (преобрадинения и кабеленесущих систем дка), - 20+ 80 (подвижная прокл	ателя			
Рабочая температура Сертификаты Жарактеристики кабелей цепей управлени Предварительно собранные соединительные кабели Тип соединительного кабеля Гип датчика положения ротора Внешняя оболочка, изоляция Количество проводников (экранированных) Внешний диаметр Гип разъема Минимальный радиус изгиба Рабочее напряжение Максимальная длина Рабочая температура Сертификаты Кабели без разъемов Тип кабеля Гип датчика положения ротора Внешняя оболочка, изоляция Количество проводников (экранированных) Внешний диаметр	мм в мм °C	-40+ 90 (стационарная проклад UL, CSA, VDE, C€, DESINA Нения серводвигателя има мв 102 R••• SinCos Полиуретан зеленого цвета RAL 6 [3 x (2 x 0.14 мм²) + 1 x (2 x 0.34 м 6.8 ± 0.2 1 промышленный разъем M23 (ди 68, пригоден для шлейфового сое 300 (0.14 мм² и 0.34 мм²) 75 (1) -40+ 80 (стационарная проклад UL, CSA, VDE, C€, DESINA WW3 мв 222 R•••• SinCos Полиуретан зеленого цвета RAL 6 [3 x (2 x 0.14 мм²) + 1 x (2 x 0.34 м м²)	я и сервопреобразов и сервопреобразователя) 018, полипропилен м²)] вигатель) и 1 разъем RJ45 (преобрадинения и кабеленесущих систем дка), - 20+ 80 (подвижная прокл	ателя			
Рабочая температура Сертификаты Жарактеристики кабелей цепей управлени Предварительно собранные соединительные кабели Тип соединительного кабеля Гип датчика положения ротора Внешняя оболочка, изоляция Количество проводников (экранированных) Внешний диаметр Гип разъема Минимальный радиус изгиба Рабочее напряжение Максимальная длина Рабочая температура Сертификаты Кабели без разъемов Тип кабеля Гип датчика положения ротора Внешняя оболочка, изоляция Количество проводников (экранированных) Внешний диаметр Гип разъема	мм в мм °C	-40+ 90 (стационарная проклад UL, CSA, VDE, C€, DESINA нения серводвигателя ими (для серводвигателя ими (для серводвигателя ими (для серводвигателя ими мв 102 R●●● SinCos Полиуретан зеленого цвета RAL 6 [3 x (2 x 0.14 мм²) + 1 x (2 x 0.34 м 6.8 ± 0.2 1 промышленный разъем M23 (ди 68, пригоден для шлейфового сое 300 (0.14 мм² и 0.34 мм²) 75 (1) -40+ 80 (стационарная прокла UL, CSA, VDE, C€, DESINA **W3 M8 222 R●●●● SinCos Полиуретан зеленого цвета RAL 6 [3 x (2 x 0.14 мм²) + 1 x (2 x 0.34 м 6.8 ± 0.2	я и сервопреобразов и сервопреобразователя) 018, полипропилен м²)] вигатель) и1 разъем RJ45 (преобрадинения и кабеленесущих систем диа), - 20+ 80 (подвижная прокл	ателя			
Рабочая температура Сертификаты Жарактеристики кабелей цепей управлени Предварительно собранные соединительные кабели Тип соединительного кабеля Гип датчика положения ротора Внешняя оболочка, изоляция Количество проводников (экранированных) Внешний диаметр Гип разъема Минимальный радиус изгиба Рабочее напряжение Максимальная длина Рабочая температура Сертификаты Кабели без разъемов Тип кабеля Гип датчика положения ротора Внешняя оболочка, изоляция Количество проводников (экранированных) Внешний диаметр Гип разъема Минимальный радиус изгиба	°С ИЯ ДЛЯ СОЕДИІ И С ДВУМЯ РАЗЪЕН ММ В М °С	-40+ 90 (стационарная проклад UL, CSA, VDE, C€, DESINA Нения серводвигателя има мв 102 R●●● SinCos Полиуретан зеленого цвета RAL 6 [3 x (2 x 0.14 мм²) + 1 x (2 x 0.34 м 6.8 ± 0.2 1 промышленный разъем M23 (ди 68, пригоден для шлейфового сое 300 (0.14 мм² и 0.34 мм²) 75 (1) -40+ 80 (стационарная прокла UL, CSA, VDE, C€, DESINA VW3 мв 222 R●●●● SinCos Полиуретан зеленого цвета RAL 6 [3 x (2 x 0.14 мм²) + 1 x (2 x 0.34 м 6.8 ± 0.2 Отсутствует, см. стр. 105	я и сервопреобразов и сервопреобразователя) 018, полипропилен м²)] вигатель) и1 разъем RJ45 (преобрадинения и кабеленесущих систем диа), - 20+ 80 (подвижная прокл	ателя			
Рабочая температура Сертификаты Жарактеристики кабелей цепей управлени Предварительно собранные соединительные кабели Тип соединительного кабеля Гип датчика положения ротора Внешняя оболочка, изоляция Количество проводников (экранированных) Внешний диаметр Гип разъема Минимальный радиус изгиба Рабочее напряжение Максимальная длина Рабочая температура Сертификаты Кабели без разъемов Тип кабеля Гип датчика положения ротора Внешняя оболочка, изоляция Количество проводников (экранированных) Внешний диаметр Гип разъема Минимальный радиус изгиба Рабочее напряжение	°С ИЯ ДЛЯ СОЕДИІ И С ДВУМЯ РАЗЪЕН ММ ММ В М °С	-40+ 90 (стационарная проклад UL, CSA, VDE, C€, DESINA нения серводвигателя из мами (для серводвигателя из мв 102 R●● SinCos Полиуретан зеленого цвета RAL 6 [3 x (2 x 0.14 мм²) + 1 x (2 x 0.34 м 6.8 ± 0.2 1 промышленный разъем M23 (ди 68, пригоден для шлейфового сое 300 (0.14 мм² и 0.34 мм²) 75 (1) -40+ 80 (стационарная прокла UL, CSA, VDE, C€, DESINA **W3 M8 222 R●●● SinCos Полиуретан зеленого цвета RAL 6 [3 x (2 x 0.14 мм²) + 1 x (2 x 0.34 м 6.8 ± 0.2 Отсутствует, см. стр. 105 68, пригоден для шлейфового сое 36, пригоден	я и сервопреобразов и сервопреобразователя) 018, полипропилен м²)] вигатель) и1 разъем RJ45 (преобрадинения и кабеленесущих систем диа), - 20+ 80 (подвижная прокл	ателя			
Рабочая температура Сертификаты Характеристики кабелей цепей управлени Предварительно собранные соединительные кабели Тип соединительного кабеля Гип датчика положения ротора Внешняя оболочка, изоляция Количество проводников (экранированных) Внешний диаметр Гип разъема Минимальный радиус изгиба Рабочее напряжение Максимальная длина Рабочая температура Сертификаты Кабели без разъемов	°С ИЯ ДЛЯ СОЕДИІ И С ДВУМЯ РАЗЪЕМ ММ В М °С	-40+ 90 (стационарная проклад UL, CSA, VDE, C€, DESINA нения серводвигателя из мами (для серводвигателя из мв 102 R●●● БіпСоѕ Полиуретан зеленого цвета RAL 6 [З х (2 х 0.14 мм²) + 1 х (2 х 0.34 м 6.8 ± 0.2 1 промышленный разъем M23 (ди 68, пригоден для шлейфового сое 300 (0.14 мм² и 0.34 мм²) 75 (1) -40+ 80 (стационарная прокла UL, CSA, VDE, C€, DESINA WW3 M8 222 R●●●● SinCos Полиуретан зеленого цвета RAL 6 [З х (2 х 0.14 мм²) + 1 х (2 х 0.34 м 6.8 ± 0.2 Отсутствует, см. стр. 105 68, пригоден для шлейфового сое 300 (0.14 мм² и 0.34 мм²) 100	я и сервопреобразов и сервопреобразователя) 018, полипропилен м²)] вигатель) и1 разъем RJ45 (преобрадинения и кабеленесущих систем диа), - 20+ 80 (подвижная прокл	азователь)			

⁽¹⁾ При длине кабеля более 75 м обращайтесь в Schneider Electric.

Описание: стр. 60

Каталожные номера: стр. 74

Размеры: стр. 78

BMH 070•• ••• 1A

Серводвигатели ВМН

Указанные ниже серводвигатели ВМН поставляются без редуктора Описание и характеристики редукторов GBX приведены на стр. 82

Длительный момент при нулевой скорости	Пиковый момент при нулевой скорости	Номинальная выходная мощность двигателя	Номинальная скорость	Макс. механи- ческая скорость	С преобразо- вателем LXM 32	№ по каталогу (1)	Macca (2)
Н-м	Н∙м	Вт	об/мин	об/мин			КГ
1.2	4.2	350	3000	8000	●U60N4	BMH 0701P ••••A	1.600
1.4	4	450	4000	8000	●U90M2	BMH 0701T ••••A	1.600
	4.2	350	2500	8000	●D18M2	BMH 0701T ••••A	1.600
		700	5000	8000	●D12N4	BMH 0701P ••••A	1.600
2.5	6.4	600	2500	8000	●D30M2	BMH 0702T ●●●A	1.800
	7.4	900	4000	8000	●D18M2		
		700	3000	8000	●D12N4	BMH 0702P ●●●●A	1.800
3.4	8.7	650	2000	8000	●D30M2	BMH 0703T ●●●A	2.000
	10.2	900	3000	8000	●D18M2	BMH 0703T ●●●A	2.000
		1300	5000	8000	●D18N4	BMH 0703P ●●●●A	2.000
3.3	10.8	800	4000	6000	●D12N4	BMH 1001P ••••A	3.340
3.4	8.9	700	2000	6000	●D30M2	BMH 1001T ••••A	3.340
	10.8	900	3000	6000	●D18M2		
		1300	4000	6000	●D18N4	BMH 1001P ••••A	3.340
6	10.3	750	2000	6000	●D30M2	BMH 1002T ●●●●A	4.920
	18.4	1450	3000	6000	●D30M2	_	
6.2	18.4	1600	4000	6000	●D18N4	BMH 1002P ●●●A	4.920
8.2	22.8	1450	2500	6000	●D30M2	BMH 1003T ●●●●A	6.500
8.4	25.1	2700	5000	6000	●D30N4	BMH 1003P ••••A	6.500

BMH 10000 0001A

⁽¹⁾ Варианты завершения каждого каталожного номера приведены в таблице на стр. 75. (2) Масса серводвигателя без тормоза и без упаковки. Масса серводвигателя с удерживающим тормозом приведена на стр. 80.

BMH 1401P ••• 1A

Длительный момент при нулевой скорости	Пиковый момент при нулевой скорости	Номинальная выходная мощность двигателя	Номинальная скорость	Макс. механическая скорость	С преобразователем LXM 32	№ по каталогу (1)	Macca (2)
Н-м	Н-м	Вт	об/мин	об/мин			КГ
10.3	30.8	1450	2000	4000	●D30M2	BMH 1401P ••••A	8.000
		2400	3000	4000	●D30N4		
18.5	55.3	3500	3000	4000	●D72N4	BMH 1402P ●●●●A	12.000
25	74.8	4700	3000	4000	●D72N4	BMH 1403P ●●●●A	16.000
34.4	103.4	5400	2000	3800	●D72N4	BMH 2051P ••••A	33.000
62.5	170	6500	1500	3800	●D72N4	BMH 2052P ••••A	44.000
84	232	6500	1200	3800	●D72N4	BMH 2053P ●●●A	67.000

Для заказа серво,	двигателя ВМН не	езаполненные позиции в кат	аложном но	мере должн	ы заменят	ъся следун	ощим:
		BMH 140	1P •	•	•	•	Α
Конец вала	IP 54	Гладкий	0				
		Со шпонкой	1				
	IP 65/IP 67 (3)	Гладкий	2				
		Со шпонкой	3				
Встроенный датчик положения ротора	Однооборотный, Sir 131 072 точки/оборо 128 sin/cos периодо	от (4)		1			
	Многооборотный, SinCos Hiperface® 131 072 точки/оборот x 4096 оборотов (4) 128 sin/cos периодов на оборот			2			
	131 072 точки/оборот	(4)		6			
	Многооборотный, Si 32 768 точек/оборот 16 sin/cos периодов	х 4096 оборотов (4)		7			
Удерживающий	Без тормоза				Α		
тормоз	Со встроенным торм	1030M			F		
Разъемы	Прямые					1	
	Вращаемые угловые)				2	
Фланец	В соответствии с ме	ждународными стандартами					A

Примечание: пример приведен для серводвигателя ВМН 1401Р. Для других серводвигателей ВМН 1401Р заменяется на соответствующий каталожный номер.

VW3 M2 302

Набор для соответствия ІР 67

Данный набор используется для получения степени защиты IP 67. Он устанавливается на место задней крышки серводвигателя.

Описание	Для серво- двигателей	№ по каталогу	Масса, кг
Набор для соответствия IP 67 (поставляется как дополнительное оборудование)	BMH 070●●	VW3 M2 301	0.100
	BMH 100●●	VW3 M2 302	0.120
	BMH 140●●	VW3 M2 303	0.140
	BMH 205●●	VW3 M2 304	0.160

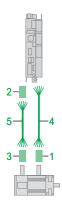
⁽¹⁾ Варианты завершения каждого каталожного номера приведены в таблице на данной странице.

⁽²⁾ Масса серводвигателя без тормоза и без упаковки. Масса серводвигателя с удерживающим тормозом приведена на стр. 80.

⁽³⁾ IP 67 с набором уплотнений WW3 M2 30•, заказываемым как дополнительное оборудование.

⁽⁴⁾ Разрешение датчика приводится для работы с сервопреобразователем Lexium 32.

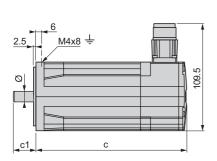
(продолжение)

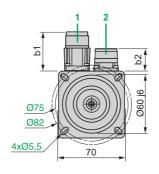


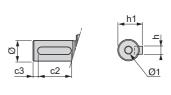
Предварительно собранные	соединител	ьные кабели для по	дключения сил	овых цепей	i	
Описание	Серво- двигатель	Серво- преобразователь	Сечение проводников	Длина	№ по каталогу	Macca
				М		кг
Кабель с одним промышленным	BMH 070●●	LXM 32••••• в зависимости от сочетания	[(4 x 1.5 mm ²)	1.5	VW3 M5 101 R15	0.60
разъемом M23 для серводвигателя)	BMH 100 • • BMH 1401P		+ (2 x 1 мм²)]	3	VW3 M5 101 R30	0.81
діл осрводви атсля)	DIVILITY II	(см. стр. с 62 по 71)	(ZXI WWW /J	5	VW3 M5 101 R50	1.21
				10	VW3 M5 101 R100	2.29
				15	VW3 M5 101 R150	3.40
				20	VW3 M5 101 R200	4.51
				25	VW3 M5 101 R250	6.20
				50	VW3 M5 101 R500	12.32
				75	VW3 M5 101 R750	18.45
	BMH 1402P		[(4 x 2.5 mm²)	3	VW3 M5 102 R30	1.07
	BMH 1403P		+ (2 x 1 мм²)]	5	VW3 M5 102 R50	1.67
			(2 X I MM ⁻)]	10	VW3 M5 102 R100	3.21
				15	VW3 M5 102 R150	4.76
				20	VW3 M5 102 R200	6.30
				25	VW3 M5 102 R250	7.94
				50	VW3 M5 102 R500	16.17
				75	VW3 M5 102 R750	24.09
Кабель с одним промышленным	BMH 205●P	LXM 32●D72N4	[(4 x 4 mm ²)	3	VW3 M5 103 R30	1.33
разъемом М40 для серводвигателя)			+ (2 x 1 мм²)]	5	VW3 M5 103 R50	2.13
для серводвинателя)			(2 X 1 MM)]	10	VW3 M5 103 R100	4.13
				15	VW3 M5 103 R150	6.12
				20	VW3 M5 103 R200	8.09
				25	VW3 M5 103 R250	11.62
				50	VW3 M5 103 R500	23.17
				75	VW3 M5 103 R750	34.72

Описание	Серво- двигатель	Серво- преобразователь	Сечение проводников	Длина	№ по каталогу	Macca
				М		КГ
Кабель для подключения	BMH ••••	LXM 32•••••	[3 x	1.5	VW3 M8 102 R15	0.400
датчика SinCos Hiperface® с промышленным разъемом M23 для серводвигателя)	,	в зависимости от сочетания	(2 x 0.14 мм²) +	3	VW3 M8 102 R30	0.500
		(см. стр. с 62 по 71)	(2 x 0.34 mm ²)]	5	VW3 M8 102 R50	0.600
и разъемом RJ45				10	VW3 M8 102 R100	0.900
с 8 + 2 контактами для сервопреобразователя)				15	VW3 M8 102 R150	1.100
діл оордопрооораоодатоліі)				20	VW3 M8 102 R200	1.400
				25	VW3 M8 102 R250	1.700
				50	VW3 M8 102 R500	3.100
				75	VW3 M8 102 R750	4.500

(продолжение)

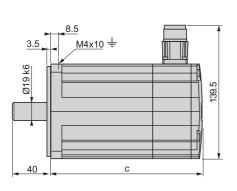


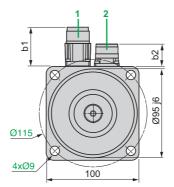

Соединительные элем	ІЕНТЫ (продолжение)				
Разъемы для изготовления	соединительных кабелей подключ	ения к силовым	цепям и це	епям управления	
Описание	Назначение	№ на рис.	Сечение кабеля	№ по каталогу	Масса
			MM ²		КГ
Промышленный разъем M23 силовые подключения (поставляется в комплекте по 5 шт.)	Серводвигатели ВМН 070 ● ● , ВМН 100 ● ● и ВМН 140 ● Р	1	1.5 или 2.5	VW3 M8 215	0.350
Промышленный разъем М40 силовые подключения (поставляется в комплекте по 5 шт.)	Серводвигатели ВМН 205ФР	1	4	VW3 M8 217	0.850
Разъем RJ45 с 8 + 2 контактами для подключения цепей управления (поставляется в комплекте по 5 шт.)	Сервопреобразователи LXM 32●●●● (Разъем CN3)	2	-	VW3 M2 208	0.200
Промышленный разъем М23 подключение цепей управления (поставляется в комплекте по 5 илт.)	Серводвигатели ВМН ••••	3	-	VW3 M8 214	0.350

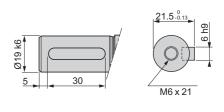

Описание	Серво- двигатель	Серво- преобразователь	Сечение проводников	№ на рис.	Длина	№ по каталогу	Macca
					м		КГ
Кабели для выполнения силовых подключений	BMH 070●● BMH 100●●	LXM 32••••• в зависимости от	[(4 x 1.5 мм²) +	4	25	VW3 M5 301 R250	5.550
	BMH 1401P	сочетания (см. стр. 62 - 71)	(2 x 1 мм²)]		50	VW3 M5 301 R500	11.100
					100	VW3 M5 301 R1000	22.200
	BMH 1402P BMH 1403P	LXM 32•••N4	[(4 x 2.5 mm²) +	4	25	VW3 M5 302 R250	7.725
			(2 x 1 mm ²)]		50	VW3 M5 302 R500	15.450
					100	VW3 M5 302 R1000	30.900
	BMH 205●P	LXM 32•••N4	[(4 x 4 mm²) +	4	25	VW3 M5 303 R250	9.900
			(2 x 1 mm ²)]		50	VW3 M5 303 R500	19.800
					100	VW3 M5 303 R1000	39.600
Кабели для создания подключений к датчикам SinCos Hiperface®	ВМН ••••	LXM 32••••• в зависимости от	[3 x (2 x 0.14 mm²)	5	25	VW3 M8 222 R250	1.400
		сочетания (см. стр. 62 - 71)	+ (2 x 0.34 мм²)]		50	VW3 M8 222 R500	2.800
					100	VW3 M8 222 R1000	5.600

ВМН 070 (пример серводвигателя с прямыми разъемами: силовое питание для серводвигателя/тормоза 1 и подключение датчика 2)

Конец вала, шпоночный паз (опция)

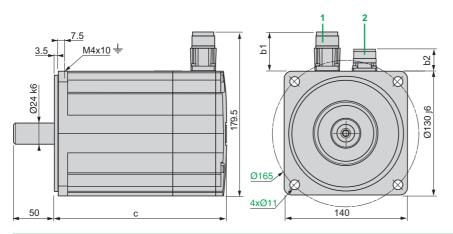


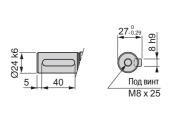



	Прямы	е разъемы	Враща угловы	емые е разъемы									
	b1	b2	b1	b2	с (без тормоза)	с (с тормозом)	c1	c2	сЗ	h	h1	Ø	Ø1 для винтов
BMH 0701 ●	39.5	25.5	39.5	39.5	122	161	23	18	2.5	4 h9	12.5 -013	11 k6	M4 x 14
BMH 0702●	39.5	25.5	39.5	39.5	154	193	23	18	2.5	4 h9	12.5-013	11 k6	M4 x 14
BMH 0703●	39.5	25.5	39.5	39.5	186	225	30	20	5	5 h9	16 ⁺⁰	14 k6	M5 x 17

ВМН 100 (пример серводвигателя с прямыми разъемами: силовое питание для серводвигателя/тормоза 1 и подключение датчика 2)

Конец вала, шпоночный паз (опция)

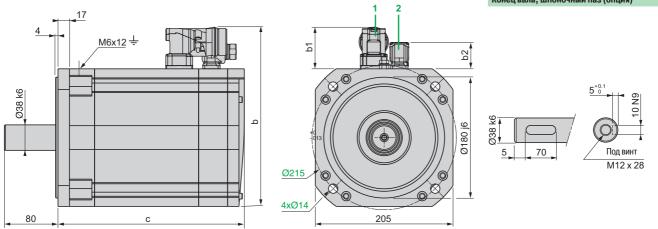



	Прямы	е разъемы	Враща угловы	емые е разъемы	_	
	b1	b2	b1	b2	с (без тор	омоза) с (с тормозом)
BMH 1001●	39.5	25.5	39.5	39.5	128	170
BMH 1002●	39.5	25.5	39.5	39.5	160	202
BMH 1003●	39.5	25.5	39.5	39.5	192	234

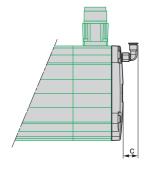
(продолжение)

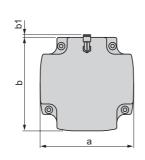
ВМН 140 (пример серводвигателя с прямыми разъемами: силовое питание для серводвигателя/тормоза 1 и подключение датчика 2)

Конец вала, шпоночный паз (опция)



	Прямы	е разъемы	Вращае угловые	мые разъемы				
	b	b1	b	b1	с (без	тормоза)	с (с тормозом)	
BMH 1401●	39.5	25.5	39.5	39.5	152		187	
BMH 1402●	39.5	25.5	39.5	39.5	192		227	
BMH 1403●	39.5	25.5	39.5	39.5	232		267	


ВМН 205 (пример серводвигателя с прямыми разъемами: силовое питание для серводвигателя/тормоза 1 и подключение датчика 2)


Конец вала, шпоночный паз (опция)

	Прямы	Прямые разъемы			Вращаемые угловые разъемы		ы	
	b	b1	b2	b	b1	b2	с (без тормоза)	с (с тормозом)
BMH 2051P	259	54	25.5	265	60	39.5	321	370.5
BMH 2052P	259	54	25.5	265	60	39.5	405	454.5
BMH 2053P	259	54	25.5	265	60	39.5	489	538.5

Набор для соответствия степени защиты ІР 67 (дополнительное оборудование)

	а	b	b1	С	
VW3 M2 301	70	70	2.8	16.8	
VW3 M2 302	100	100	3	15.8	
VW3 M2 303	140	140	3	14.5	
VW3 M2 304	205	205	-	21.8	

Описание: Характеристики: Каталожные номера: стр. 60 стр. 62 стр. 74

Встроенный удерживающий тормоз

Удерживающий тормоз

Описание

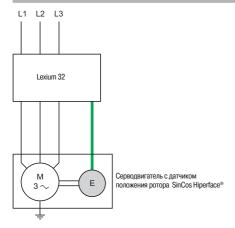
Встроенный в серводвигатель ВМН удерживающий тормоз представляет собой электромагнитный тормоз с нажимными пружинами, блокирующий вал серводвигателя после отключения тока питания серводвигателя.

В аварийных случаях, например, при отключении питания или аварийной остановке, вал двигателя стопорится, что значительно увеличивает безопасность сервопривода. Блокировка вала серводвигателя также необходима при перегрузке по моменту, что может происходить при перемещении в вертикальной плоскости.

Сервопреобразователь Lexium 32 в стандартном исполнении оснащен встроенным контроллером удерживающего тормоза, усиливающим команды управления тормозом, что позволяет быстро его отключать. При дальнейшей работе уровень управляющего сигнала снижается для уменьшения рассеиваемой в тормозе энергии.

Характеристики							
Тип серводвигателя	ВМН	0701, 0702, 0703	1001, 1002	1003	1401, 1402	1403	2051, 2052, 2053
Удерживающий момент M _{Br}	Н∙м	3	5.5	9	18	23	80
Момент инерции ротора (только тормоз) J _{Br}	КГ∙СМ²	0.11	0.49	0.93	1.5	2.73	16
Электрическая мощность фиксации Р _{вг}	Вт	7	12	18	18	19	40
Номинальный ток	A	0.29	0.5	0.75	0.75	0.79	1.67
Напряжение питания	В	24 +5/-15%					24 +6/-10%
Время включения (открытия)	мс	80	70	90	100	100	200
Время отключения (закрытия)	мс	10	30	25	50	40	50
Масса (добавляется к массе серводвигателя без удерживающего тормоза, см. стр. 74)	КГ	0.3	0.5	0.7	1.1	1.3	3.6

Каталожные номера


Серводвигатель ВМН

Для выбора серводвигателя ВМН с удерживающим тормозом или без него необходимо обратиться к разделу «Каталожные номера», стр. 75.

Встроенный датчик положения ротора

Датчик положения ротора, встроенный в серводвигатель ВМН

Описание

Одно- или многооборотный датчик положения ротора SinCos Hiperface $^{\circ}$, встроенный в серводвигатель ВМН, является стандартным измерительным устройством, полностью адаптированным к сервопреобразователю Lexium 32.

Применение данного датчика с интерфейсом передачи данных обеспечивает:

- автоматическую идентификацию параметров серводвигателя ВМН сервопреобразователем;
- автоматическую инициализацию контуров регулирования, упрощая таким образом ввод в действие устройств управления перемещением.

Характеристики						
Тип датчика		Однооборотный SinC	os	Многооборотный SinCos		
Количество периодов sin/cos на оборот		16	128	16	128	
Количество точек (1)		32 768	131 072	32 768 х 4096 оборотов	131 072 x 4096 оборотов	
Точность датчика	Угловые минуты	± 4.8	± 1.3	± 4.8	± 1.3	
Метод измерения		Емкостный, средняя разрешающая способность	Оптический, высокая разрешающая способность	Емкостный, средняя разрешающая способность	Оптический, высокая разрешающая способность	
Интерфейс		Hiperface®				
Диапазон рабочих температур	°C	-40+115	-20+110	-20+115	-20+110	

(1) Разрешение датчика приведено для использования с сервопреобразователем Lexium 32.

Каталожные номера

Для выбора одно- или многообротного датчика SinCos Hiperface®, встроенного в серводвигатель ВМН, необходимо обратиться к разделу «Каталожные номера», стр. 75.

Серводвигатель ВМН

Планетарные редукторы GBX

Описание

Планетарный редуктор GBX

Во многих случаях в процессе управления перемещениями требуется использование планетарных редукторов, согласующих скорости и моменты и обеспечивающих при этом точность, требуемую механизмом.

Для использования с серводвигателями серии BMH компания Schneider Electric выбрала редукторы типа GBX (изготовитель Neugart). Эти редукторы не нуждаются в дополнительной смазке в течение всего срока службы и могут использоваться в механизмах, не требующих очень малых люфтов. Совместное использование данных редукторов с серводвигателями BMH тщательно изучено, соединение данных устройств очень легко осуществимо, и при этом гарантируется простая и надежная эксплуатация.

Планетарные редукторы предлагаются в 5 типоразмерах (GBX 40...GBX 160) и с 15 вариантами передаточных отношений (3:1...100:1), см. приведенную ниже таблицу.

Длительный и пиковый моменты при нулевой скорости, получаемые на выходе редуктора, рассчитываются путем умножения значений соответствующих характеристик серводвигателя на понижающее передаточное отношение и КПД редуктора (0.96, 0.94 или 0.9 в зависимости от передаточного отношения).

В приведенной ниже таблице представлены наиболее предпочтительные сочетания серводвигателя и редуктора. Для расчета других возможных комбинаций необходимо обращаться к техническим характеристикам серводвигателя.

Предпочтительные ком	бинации сер	водвигател	я ВМН и пла	нетарного р	едуктора Gl	ВХ		
Понижающий передаточный к	оэффициент о	т 3:1 до 16:1						
Тип серводвигателя	Передаточное с	тношение						
	3:1	4:1	5:1	8:1	9:1	12:1	15:1	16:1
BMH 0701	GBX 60	GBX 60	GBX 60	GBX 60	GBX 60	GBX 60	GBX 60	GBX 60
BMH 0702	GBX 60	GBX 60	GBX 60	GBX 80	GBX 60	GBX 60	GBX 80	GBX 80
ВМН 0703	GBX 60	GBX 60	GBX 60	GBX 80	GBX 60	GBX 80	GBX 80	GBX 80
BMH 1001	GBX 80	GBX 80	GBX 80	GBX 80	GBX 80	GBX 80	GBX 80	GBX 80
BMH 1002	GBX 80	GBX 80	GBX 80	GBX 120	GBX 80	GBX 80	GBX 120	GBX 120
BMH 1003	GBX 80	GBX 80	GBX 80	GBX 120	GBX 80	GBX 120	GBX 120	GBX 120
BMH 1401	GBX 120	GBX 120	GBX 120	GBX 120	GBX 120	GBX 120	GBX 160	GBX 160
BMH 1402	GBX 120	GBX 120	GBX 120	GBX 160	_	GBX 160	GBX 160	GBX 160
BMH 1403	GBX 120	GBX 120	GBX 120	GBX 160	_	GBX 160	GBX 160	GBX 160
BMH 2051	-	_	_	_	_	_	_	-
BMH 2052	_	_	_	_	_	_	_	-
BMH 2053	_	_	_	-	-	_	-	-
Понижающий передаточный к	соэффициент о	т 20:1 до 100:1						
Тип серводвигателя	Передаточное с	отношение						
	20:1	25:1	32:1	40:1	60:1	80:1	100:1	
ВМН 0701	GBX 80	GBX 80	GBX 80	GBX 80	GBX 120	GBX 120	GBX 120	
ВМН 0702	GBX 80	GBX 80	GBX 120	GBX 120	GBX 120	GBX 120	GBX 120	
ВМН 0703	GBX 80	GBX 120	GBX 120	GBX 120	GBX 120	GBX 120	GBX 120	
BMH 1001	GBX 80	GBX 120	GBX 120	GBX 120	_	_	_	
BMH 1002	GBX 120	GBX 160	GBX 160	GBX 160	_	_	_	
BMH 1003	GBX 120	GBX 160	GBX 160	GBX 160	_	_	_	
BMH 1401	GBX 160	GBX 160	GBX 160	GBX 160	_	_	_	
BMH 1402	GBX 160	GBX 160	GBX 160	GBX 160	_	_	_	
BMH 1403	GBX 160	GBX 160	GBX 160	GBX 160	_	_	_	
BMH 2051	-	_	_	_	_	_	-	
BMH 2052	_	_	_	_	_	_	_	
BMH 2053	_	_	_	_	_	_	_	

GBX 60

Для комбинаций, выделенных таким способом, необходимо убедиться, что требуемый механизмом момент не превышает максимальный располагаемый момент на выходе редуктора (см. значения, приведенные на стр. 84).

 Характеристики:
 Каталожные номера:
 Размеры:

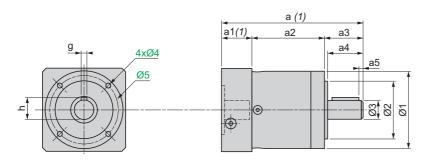
 стр. 83
 стр. 85
 стр. 86

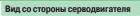
Монтаж: стр. 87

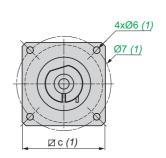
Типоразмеры редуктора			GBX 40	GBX 60	GBX 80	GBX 120	GBX 160	
Тип редуктора			Прямозубый пла	нетарный редуктор)			
Свободный ход	3:1 8:1	Угл.	< 24	< 16	< 9	< 8	< 6	
	9:1 40:1	мин	< 28	< 20	< 14	< 12	< 10	
	60:1 100:1		< 30	< 22	< 16	< 14	-	
Жесткость при кручении	3:1 8:1	Н-м/	1	2.3	6	12	38	
	9:1 40:1	Угл. мин	1	2.5	6.5	13	41	
	60:1 100:1	MVIII	1	2.5	6.3	12	-	
Уровень шума (1)		дБ (А)	55	58	60	65	70	
Корпус			Анодированный	алюминий черного	цвета			
Материал вала			C 45					
Степень защиты выхода вала			IP 54					
Смазка			На весь срок слу	жбы				
Средний срок службы (2)		ч	30000					
Монтажное положение			Любое					
Диапазон рабочей температуры		°C	-25+90					
кпд	3:18:1		0.96					
	9:140:1		0.94					
	60:1100:1		0.9					
Максимально допустимые	L _{10h} = 10000 часов	Н	200	500	950	2000	6000	
радиальные усилия (2) (3)	L _{10h} = 30000 часов	н	160	340	650	1500	4200	
Максимально допустимые осевые	L _{10h} = 10000 часов	н	200	600	1200	2800	8000	
усилия (2)	L _{10h} = 30000 часов	н	160	450	900	2100	6000	
Момент инерции редуктора	3:1	KΓ·CM ²	0.031	0.135	0.77	2.63	12.14	
	4:1	KΓ·CM ²	0.022	0.093	0.52	1.79	7.78	
	5:1	K Г ∙CM ²	0.019	0.078	0.45	1.53	6.07	
	8:1	KΓ·CM ²	0.017	0.065	0.39	1.32	4.63	
	9:1	KГ∙CM ²	0.03	0.131	0.74	2.62	-	
	12:1	KГ·CM ²	0.029	0.127	0.72	2.56	12.37	
	15:1	кг•см²	0.023	0.077	0.71	2.53	12.35	
	16:1	кг•см²	0.022	0.088	0.5	1.75	7.47	
	20:1	кг•см²	0.019	0.075	0.44	1.5	6.65	
	25:1	KΓ·CM ²	0.019	0.075	0.44	1.49	5.81	
	32:1	K Г ∙CM ²	0.017	0.064	0.39	1.3	6.36	
	40:1	KГ·CM ²	0.016	0.064	0.39	1.3	5.28	
	60:1	KГ·CM ²	0.029	0.076	0.51	2.57	-	
	80:1	KT·CM ²	0.023	0.075	0.5	1.5	_	
	100:1	KΓ·CM ²	0.019	0.075	0.44	1.49	-	

⁽¹⁾ Значение, полученное при измерении на расстоянии 1 м, частота вращения не нагруженного серводвигателя 3000 об/мин, передаточное отношение 5:1. (2) Значения приводятся для скорости выходного вала 100 об/мин в режиме S1 для электрической машины при температуре окружающей среды 30°C. (3) Усилия прикладываются в середине выходного вала.

Типоразмер редуктора			GBX 40	GBX 60	GBX 80	GBX 120	GBX 160
Длительный момент на выходе M _{2N}	3:1	Н∙м	11	28	85	115	400
(1)	4:1	Н∙м	15	38	115	155	450
	5:1	Н∙м	14	40	110	195	450
	8:1	Н∙м	6	18	50	120	450
	9:1	Н∙м	16.5	44	130	210	-
	12:1	Н∙м	20	44	120	260	800
	15:1	Н∙м	18	44	110	230	700
	16:1	Н∙м	20	44	120	260	800
	20:1	Н∙м	20	44	120	260	800
	25:1	Н∙м	18	40	110	230	700
	32:1	Н∙м	20	44	120	260	800
	40:1	Н∙м	18	40	110	230	700
	60:1	Н∙м	20	44	110	260	-
	80:1	Н∙м	20	44	120	260	-
	100:1	Н∙м	20	44	120	260	-
Лаксимальный момент на выходе	3:1	Н∙м	17.6	45	136	184	640
1)	4:1	Н∙м	24	61	184	248	720
	5:1	Н∙м	22	64	176	312	720
	8:1	Н∙м	10	29	80	192	720
	9:1	Н∙м	26	70	208	336	-
	12:1	Н∙м	32	70	192	416	1280
	15:1	Н∙м	29	70	176	368	1120
	16:1	Н∙м	32	70	192	416	1280
	20:1	Н∙м	32	70	192	416	1280
	25:1	Н∙м	29	64	176	368	1120
	32:1	Н∙м	32	70	192	416	1280
	40:1	Н∙м	29	64	176	368	1120
	60:1	Н∙м	32	70	176	416	-
	80:1	Н∙м	32	70	192	416	-
	100:1	Н∙м	32	70	192	416	-


⁽¹⁾ Значения приводятся для скорости выходного вала 100 об/мин в режиме S1 для электрической машины при температуре окружающей среды 30°C.


Каталожные номера				
	Типо- размер	Передаточное отношение	№ по каталогу	Масса, кг
	GBX 40	3:1, 4:1, 5:1 и 8:1	GBX 040 • • • • F	0.350
		9:1, 12:1, 15:1, 16:1 и 20:1	GBX 040••• ••• •F	0.450
	GBX 60	3:1, 4:1, 5:1 и 8:1	GBX 060••• ••• •F	0.900
6		9:1, 12:1, 15:1, 16:1, 20:1, 25:1, 32:1 и 40:1	GBX 060●●● ●● ●F	1.000
		60:1	GBX 060••• ••• •F	1.300
GBX ●●●	GBX 80	3:1, 4:1, 5:1 и 8:1	GBX 080●●● ●● ●F	2.100
		9:1, 12:1, 15:1, 16:1, 20:1, 25:1, 32:1 и 40:1	GBX 080••• ••• •F	2.600
		60:1, 80:1 и 100:1	GBX 080••• ••• •F	3.100
	GBX 120	3:1, 4:1, 5:1 и 8:1	GBX 120••• ••• •F	6.000
		9:1, 12:1, 15:1, 16:1, 20:1, 25:1, 32:1 и 40:1	GBX 120••• ••• •F	8.000
		60:1, 80:1 и 100:1	GBX 120••• ••• •F	10.000
	GBX 160	5:1 и 8:1	GBX 160••• ••• •F	18.000
		12:1, 15:1, 16:1, 20:1, 25:1, 32:1 и 40:1	GBX 160 • • • • F	22.000


Для заказа планетарного реду	ктора GBX вышеуказанные ка	аталожные номера необходимо	дополнить	следующим	и образом:		
		GBX	•••	•••	•••	•	F
Типоразмер	Диаметр корпуса	40 мм	040				
	(см. таблицу совместимости с серводвигателями ВМН на стр. 82)	60 мм	060				
	серводвигателями вічіт на стр. огу	80 мм	080				
		120 мм	120				
		160 мм	160				
Передаточное отношение		3:1		003			
		4:1		004			
		5:1		005			
		8:1		800			
		9:1		009			
		12:1		012			
		15:1		015			
		16:1		016			
		20:1		020			
		25:1		025			
		32:1		032			
		40:1		040			
		60:1		060			
		80:1		080			
		100:1		100			
Присоединение к серводвигателю	Тип	BMH 070			070		
ВМН		BMH 100			100		
		BMH 140			140		
	Модель	BMH •••1				1	
		BMH ●●●2				2	
		BMH ●●●3				3	
Адаптация серводвигателя ВМН							F

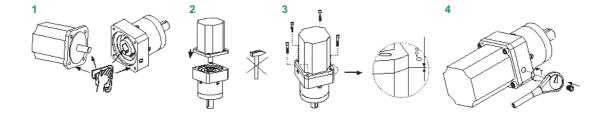
Описание:	Характеристики:	Размеры:	Монтаж:
стр. 82	стр. 83	стр. 86	стр. 87

Размеры

GBX	a2	a3	a4	a5	h	g	Ø1	Ø2	Ø3	Ø4	Ø5
040 003008	39	26	23	2.5	11.2	3	40	26 h7	10 h7	M4 x 6	34
040 009020	52	26	23	2.5	11.2	3	40	26 h7	10 h7	M4 x 6	34
060 003008	47	35	30	2.5	16	5	60	40 h7	14 h7	M5 x 8	52
060 009040	59.5	35	30	2.5	16	5	60	40 h7	14 h7	M5 x 8	52
060 060	72	35	30	2.5	16	5	60	40 h7	14 h7	M5 x 8	52
080 003008	60.5	40	36	4	22.5	6	80	60 h7	20 h7	M6 x 10	70
080 009040	77.5	40	36	4	22.5	6	80	60 h7	20 h7	M6 x 10	70
080 060100	95	40	36	4	22.5	6	80	60 h7	20 h7	M6 x 10	70
120 003008	74	55	50	5	28	8	115	80 h7	25 h7	M10 x 16	100
120 009040	101	55	50	5	28	8	115	80 h7	25 h7	M10 x 16	100
120 060100	128	55	50	5	28	8	115	80 h7	25 h7	M10 x 16	100
160 005, 008	104	87	80	8	43	12	160	130 h7	40 h7	M12 x 20	145
160 012040	153.5	87	80	8	43	12	160	130 h7	40 h7	M12 x 20	145

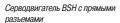
(1) Размеры a, a1, Øс, Ø6 и Ø7 зависят от комбинации редуктора GBX и серводвигателя ВМН:

Варианты комбин	ации	Передаточное	отношение					
Редуктор	Серводвигатель	От 3:1 до 8:1	От 9:1 до 40:1	От 60:1 до 100:1	От 3:1 до 100:1	От 3:1 до 100:1	От 3:1 до 100:1	От 3:1 до 100:1
		a	а а	a	a1	_ ⊠c	Ø6	
GBX 060	BMH 0701, 0702	106	118.5	131.5	24	70	M5	75
GBX 060	BMH 0703	113	125.5	138.5	31	70	M5	75
GBX 080	BMH 070●	133.5	151	168.5	33.5	80	M5	82
GBX 080	BMH 10011003	143.5	161	178.5	43.5	100	M8	115
GBX 120	BMH 070●	-	203.5	231	47.5	115	M5	75
GBX 120	BMH 10011003	176.5	203.5	231	47.5	115	M8	115
GBX 120	BMH 140●	186.5	213.5	_	57.5	140	M10	165
GBX 160	BMH 1002, 1003	=	305	-	64.5	140	M8	115
GBX 160	BMH 140●	255.5	305	_	64.5	140	M10	165


Планетарные редукторы GBX

Монтаж

Для соединения планетарного редуктора GBX и серводвигателя ВМН не требуется использование специальных инструментов. Соединение необходимо выполнять с соблюдением общих правил механических монтажных работ в следующей последовательности:


- 1 Очистите сопрягаемые поверхности и места уплотнений
- 2 Оцентрируйте соединяемые валы, сборка выполняется в вертикальном положении
- **3** Обеспечьте равномерное прилегание фланцев серводвигателя и редуктора, «наживите» винты с крестообразными шлицами
- **4** Затяните винты, соблюдая момент затяжки кольца ТА при помощи динамометрического ключа (2...40 H·м в зависимости от модели редуктора)

Более подробная информация по монтажу приведена в инструкциях к каждому изделию, входящих в комплект поставки.

Каталожные номера:

Серводвигатель BSH с вращаемыми угловыми разъемами

Момент. Н⋅м 1 2 Скорость, об/мин Рабочая зона

Представление

Серводвигатели BSH отличаются превосходной динамикой и точностью. Четыре типоразмера фланцевых соединений и несколько вариантов длины корпуса позволяют получить решение для максимально возможного количества механизмов в диапазоне моментов от 0.5 до 33.4 Н·м при максимальной скорости до 9000 об/мин.

Благодаря новой технологии изготовления обмоток, основанной на использовании явновыраженных полюсов, серводвигатели BSH являются более компактными и обладают более высокой удельной мощностью по сравнению с обычными серводвигателями.

Серводвигатели BSH предлагаются с четырьмя типоразмерами фланцев: 55, 70, 100 и 140 мм. Серводвигатели сертифицированы с отметкой Recognized 🔊 организацией Underwriters Laboratories и соответствуют стандартам UL 1004, равно как и Европейским директивам (маркировка СЄ). Серводвигатели BSH предлагаются в следующих вариантах исполнения:

- Степень защиты IP 50 или IP 65
- С удерживающим тормозом или без него
- Прямые или угловые разъемы для подключения
- Одно- или многооборотный датчик положения ротора SinCos
- С гладким концом вала или с концом вала со шпонкой

Характеристики момента/скорости

Слева приведен пример характеристики момент/скорость серводвигателя BSH, где показаны:

- Пиковый момент, зависящий от модели сервопреобразователя
- 2 Длительный момент, зависящий от модели сервопреобразователя,

- n_{max} (в об/мин) соответствует максимальной скорости вращения серводвигателя
- " (в Н⋅м) величина пикового момента при нулевой скорости
- M_a (в H·м) величина длительного момента при нулевой скорости

Принцип выбора серводвигателя в зависимости от применения

Характеристики момента/скорости могут использоваться для правильного выбора типоразмера серводвигателя:

1 Определяется рабочая зона механизма по скорости вращения

2 На основании циклограммы работы серводвигателя подтверждается, что требуемый для привода механизма момент во всех фазах цикла работы расположен внутри рабочей зоны, ограниченной

3 Рассчитываются средняя скорость \mathbf{n}_{avg} и эквивалентный тепловой момент \mathbf{M}_{eo} (см. стр. 116)

4 Точка, определяемая значениями **n** и **M** , должна располагаться ниже кривой **2** в рабочей зоне

Примечание: более подробно алгоритм выбора серводвигателя приведен на стр. 116.

Функции

Основные функции

Серводвигатели BSH разработаны с учетом следующих требований:

- Функциональные возможности, прочность, безопасность и другие особенности в соответствии c M9K/EN 60034-1
- Рабочая температура окружающей среды:
- □ 20...40°С в соответствии с DIN 50019R14
- □ Максимальная температура 55°C со снижением номинальной выходной мощности на 1% при увеличении температуры на 1°С выше 40°С
- Относительная влажность: МЭК 60721-3-3, категория 3К4
- Максимальная рабочая высота над уровнем моря: 1000 м без ухудшения характеристик, 2000 м с коэффициентом k = 0.86, 3000 м с коэффициентом k = 0.8 (1)
- Температура хранения и транспортировки: 25...70°C
- Класс изоляции обмоток: F (предельная температура обмоток 155°C) в соответствии с
- Подключение питания и датчика положения ротора через прямые или угловые разъемы
- Встроенные терморезисторы РТС
- Допуски на радиальное биение, несоосность и неперпендикулярность между фланцем и валом в соответствии с DIN 42955, класс N
- Разрешенные установочные положения: без ограничений для IMB5 IMV1 и IMV3 в соответствии с DIN 42950
- Лакокрасочное покрытие на основе полиэфирной смолы: черный цвет RAL 9005

1) к: коэффициент снижения номинальных параметров.

Функции (продолжение)

Основные функции (продолжение)

- Степень защиты:
- □ Корпус серводвигателя: ІР 65 в соответствии с МЭК/ЕN 60529
- $\ \square\$ Конец вала: IP 50 (1) или IP 65 в соответствии с МЭК/EN 60529
- Встроенный датчик положения ротора: SinCos Hiperface®, одно- или многооборотный, с высоким разрешением
- Конец вала: гладкий или со шпонкой

Удерживающий тормоз

Серводвигатели BSH могут оснащаться надежным электромагнитным удерживающим тормозом.

Удерживающий тормоз не может использоваться в качестве устройства для торможения в динамических режимах работы, так как это может привести к быстрому выходу тормоза из строя.

Встроенный датчик положения ротора

Серводвигатели BSH оснащаются датчиком положения ротора с высоким разрешением SinCos Hiperface®, однооборотным (131 072 точки/оборот) (2) или многооборотным (131 072 точки/оборот х 4096 оборотов) (2), обеспечивающим точность отсчета углового положения вала менее чем ± 1.3 угловые минуты.

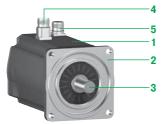
Датчик выполняет следующие функции:

- Выдает абсолютное положение ротора серводвигателя, что позволяет осуществлять синхронизацию
- Измеряет скорость серводвигателя совместно с подключенным сервопреобразователем Lexium 32

Информация от датчика положения ротора используется регулятором скорости сервопреобразователя следующим образом:

- Измеренная датчиком информация о положении ротора передается в контроллер для позиционирования
- Данные серводвигателя пересылаются в сервопреобразователь, обеспечивая автоматическую идентификацию серводвигателя при пуске сервопривода

Описание


Серводвигатель BSH состоит из трехфазного статора и 6 - 10-полюсного ротора (в зависимости от модели) с магнитами из сплава NdFeB (неодим, железо, бор), а также включает в себя следующие конструктивные элементы:

- Корпус с лакокрасочным покрытием черного цвета RAL 9005
- Фланец с 4 отверстиями для осевого крепления
- Конец вала: гладкий или со шпонкой (в зависимости от модели)
- 4 Прямой штыревой герметичный разъем с винтовым соединением для подключения силового
- 5 Прямой штыревой герметичный разъем с винтовым соединением для подключения кабеля управления (датчика положения ротора) (3)

Отдельно может быть заказана соединительная арматура для подключения к сервопреобразователям Lexium 32 (см. стр. 104).

Компания Schneider Electric просит обратить особое внимание на обеспечение совместимости между серводвигателями BSH и сервопреобразователями Lexium 32. Данная совместимость может быть обеспечена только при использовании кабелей и разъемов, поставляемых компанией Schneider Electric (см. стр. 104).

- (1) IP 50 при установке в положении IMV3 (вертикальная установка с концом вала вверху), IP 54 при установке в положении IMV1 (вертикальная установка с концом вала внизу) или положении IMB5 (установка в горизонтальном положении).
- (2) Разрешение датчика приведено для использования совместно с сервопреобразователем Lexium 32.
- (3) Другие модели с вращаемым угловым разъемом.

Schneider

Серводвигатели BSH Однофазное напряжение питания 115 В

Тип серводвига	теля		BSH 055 1T	BSH 055	2T	BSH 055 3T
Подключаемый	і сервопреобразователь Lexium 32		LXM 32• U90M2			LXM 32• D18M2
Іастота коммута	ации	кГц	8			
Момент	Длительный при нулевой $\mathbf{M}_{\scriptscriptstyle{0}}$ скорости	Н∙м	0.5	0.8		1.2
	Пиковый при нулевой скорости М _{та}	Н∙м	1.5	1.9		3.3
Номинальная	Номинальный момент	Н∙м	0.49	0.77		1.14
рабочая точка	Номинальная скорость	об/мин	3000			
	Номинальная мощность на выходе серводвигателя	Вт	150	250		350
Лаксимальный 1	гок	А, действ.	5.4	6		10
Характеристи	іки серводвигателя					
Максимальная м частота вращені		об/мин	9000			
Постоянные при 120°C)	Момента	H⋅м/A, действ.	0.36			0.39
	Обратной ЭДС	В, действ./ 1000 об/мин	22			
Ротор	Число полюсов		6			
	Инерция Без тормоза J _m	KГ·CM ²	0.059	0.096		0.134
	С тормозом Ј	KГ•CM ²	0.0803	0.1173		0.1553
Статор	Сопротивление (межфазное)	Ом	12.2	5.2		3.1
при 20°C)	Индуктивность (межфазная)	мГн	20.8	10.6		7.4
Характеристи	ики момента/скорости					
Серводвигател	ь BSH 055 1T	Серводвига	гель BSH 055 2T		Серводвигатель BSH	1 055 3T
2 сервопреобра	зователем LXM 32•U90M2	С сервопреоб	бразователем LXM 32∙U90M2		С сервопреобразоват	гелем LXM 32•D18M2
Момент, Н∙м		Момент, Н⋅м			Момент, Н⋅м	
M _{max}		2,5			3,5 M _{max}	-+
1,4 1		M _{max} = 1			3,0 1	
1,0		1,5			2,5	
0,8		1,0			2,0	
0,6 M ₀		1,0 -2			1,5 M ₀	
M _o		M₀ 0,5			1,0	
0,2		- 0,5			0,5	
0		0			0	

- Пиковый момент
 Длительный момент

Серводвигатели BSH Однофазное напряжение питания 115 В

Тип серводвига	теля			BSH 070 1T	BSH 070 2	2T	BSH 100 1T
Подключаемый	сервопреобра	зователь Lexium 32		LXM 32● D18M2	LXM 32• D30M2		
Настота коммута	щии		кГц	8	•		
Момент	Длительный п скорости	ри нулевой М _о	Н∙м	1.4	2.2		3.3
	Пиковый при і	нулевой скорости М _{мах}	Н∙м	3.5	6.1		6.3
І оминальная	Номинальный	момент	Н-м	1.36	2.07		2.75
абочая точка	Номинальная	скорость	об/мин	2500			
	Номинальная серводвигател	мощность на выходе пя	Вт	350	550		700
Лаксимальный т	ок		А, действ.	10	15		15
Характеристи	ки серводвиг	ателя					
Лаксимальная м астота вращени			об/мин	8000			6000
Постоянные при 120°C)	Момента		H⋅м/A, действ.	0.44	0.45		
	Обратной ЭДО		В, действ./ 1000 об/мин	26	28		29
Ротор	Число полюсо	В		6			8
	Инерция	Без тормоза Ј	K Г∙СМ ²	0.25	0.41		1.4
		С тормозом J _m	кг∙см²	0.322	0.482		2.018
Статор	Сопротивлени	е (межфазное)	Ом	3.3	1.5		0.87
при 20°C)	Индуктивност	ь (межфазная)	мГн	12.3	6.7		4
Характеристи	ки момента/о	скорости					
Серводвигател	BSH 070 1T	·	Серводвигат	ель BS H 070 2T		Серводвигатель BSI	1 100 1T
С сервопреобра	зователем LXM	32•D18M2	С сервопреоб	разователем LXM 32. D30M2		С сервопреобразова	телем LXM 32•D30M2
Момент, Н∙м			Момент, Н⋅м			Момент, Н⋅м	
4,0			7 1			M _{max} 7	
VI _{max}			M _{max} 1				· · · · · · · · · · · · · · · · · · ·
3,0	<u> </u>		5			5	
2,5			4			4 2	
			3 2			M ₀ Z	
1,0			M _o Z			2	1
0,5			1			1	
0,5			0			0	
0 1000	2000 3	3000 4000 5000	0	1000 2000 3000	4000	0 1000	2000 3000 400

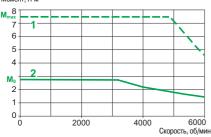
- 1 Пиковый момент
- 2 Длительный момент

Серводвигатели BSH Однофазное напряжение питания 230 В

Тип серводвига	теля		BSH 055 1T	BSH 055 2T	BSH 055 3T	BSH 070 1T	BSH 070 2T	BSH 070 3T
Подключаемый	сервопреобразователь Lexium 32		LXM 32● U45M2	LXM 32● U90M2			LXM 32• D18M2	
Настота коммута	пции	кГц	8	·			•	
Момент	Длительный при нулевой \mathbf{M}_{o} скорости	Н-м	0.5	0.8	1.2	1.3	2.2	2.6
	Пиковый при нулевой скорости М _{ма}	Н-м	1.4	2.5	3	3.5	7.2	7.4
Іоминальная	Номинальный момент	Н-м	0.45	0.74	0.84	0.94	1.8	2.1
абочая точка	Номинальная скорость	об/мин	6000	<u>'</u>	•	5000	•	4000
	Номинальная мощность на выходе серводвигателя	Вт	300	450	550	500	950	900
Лаксимальный т	гок	А, действ.	4.5	8.8	9	9	18	
Характеристи	ки серводвигателя							
Лаксимальная м астота вращени	теханическая	об/мин	9000			8000		
Постоянные	Момента	H·м/A, действ.	0.36		0.39	0.44	0.45	0.44
	Обратной ЭДС	В, действ./ 1000 об/мин	22			26	28	29
Ротор	Число полюсов		6					
	Инерция Без тормоза J _m	KГ·СМ ²	0.059	0.096	0.134	0.25	0.41	0.58
	С тормозом J _m	KГ∙СМ ²	0.0803	0.1173	0.1553	0.322	0.482	0.81
татор	Сопротивление (межфазное)	Ом	12.2	5.2	3.1	3.3	1.5	0.91
три 20°C)	Индуктивность (межфазная)	мГн	20.8	10.6	7.4	12.3	6.7	4.4
Характеристи	ки момента/скорости							
Серводвигателі	ь BSH 055 1T	Серводвига	тель <mark>BSH</mark> 055 21	•	Сери	водвигатель BSH	055 3T	
сервопреобра:	зователем LXM 32∙U45M2	С сервопрео	бразователем L		С сер	вопреобразоват	елем LXM 32•U9	00M2
	зователем LXM 32•U45M2	С сервопрео Момент, Н·м			С сер Момен			00M2
Ломент, Н⋅м 1.6 т	зователем LXM 32•U45M2	Момент, Н⋅м 3,0			Момен 3.5 Т			00M2
Момент, Н⋅м 1,6 М _{мах} 1	зователем LXM 32•U45M2	Момент, Н∙м			Момен	т, Н-м		00M2
Ломент, Н·м 1,6 1,2	зователем LXM 32•U45M2	Момент, Н·м 3,0 М _{мах} 1			Момен 3.5 Т	т, Н-м		00M2
Помент, Н·м 1,6 1 1,1 1,2 1,0	зователем LXM 32•U45M2	Момент, H-м 3,0 М _{тах} 1 2,0			Момен 3.5 М _{мах}	т, Н-м		00M2
ломент, Н·м 1,6 1,6 1,2 1,0 0,8	зователем LXM 32•U45M2	Момент, Н·м 3,0 М _{мах} 1			Momen 3.5 M _{max} 2,5 2,0	т, Н-м		00M2
Ломент, Н-м 1,6 1,6 1,2 1,0 0,8 0,6 2	зователем LXM 32•U45M2	Момент, Н-м 3,0 М _{тах} 1 2,0			3.5 M _{max} 2,5 - 2,0 -	т, Н-м		00M2
Момент, Н-м 1,6 1,6 1,2 1,2 1,0 0,8 0,6 2	зователем LXM 32•U45M2	Момент, Н·м 3,0 М _{тах} 1 2,0 1,5			Momen 3.5 M _{max} 2,5 2,0	т, Н-м		OOM2
Момент, Н-м 1,6 1,6 1,2 1,2 1,0 0,8 0,6 2 0,4 0,2	зователем LXM 32•U45M2	Момент, Н·м 3,0 м _{max} 1 2,0 1,5 м ₀ 0,5			Momen 3.5 M _{max} 2,5 2,0 1,0 0,5	т, Н-м		OOM2
Момент, Н-м 1,6 1,6 1,1 1,2 1,2 1,0 0,8 0,6 2 0,4	Зователем LXM 32•U45M2 3000 5000 7000 90 Скорость, об,	Moment, H·m 3,0 M _{max} 1 2,0 1,5 M ₀ 0,5	бразователем L	XM 32•U90M2	Momen 3.5 M _{max} 2,5 2,0	T, H·M	елем LXM 32•U9	7000 900 Скорость, об/м
Момент, Н-м 1,6 1,6 1,2 1,0 0,8 0,6 2 0,4 0,2 0 0 1000	3000 5000 7000 90 Скорость, об,	Момент, Н-м 3,0 м _{max} 1 2,0 1,5 0,5 0 0 1000	бразователем L 3000 3000	XM 32∙U90M2 5000 7000 Скорос	Момен 3.5 м. м. 2,5 2,0 2,0 1,0 0,5 0,5 0,0 0,5 0,0 0,5 0,0 0,5 0,0 0,5 0,0 0,5 0,0 0,5 0,0 0,5 0,0 0,5 0,0 0,5 0,0 0,5 0,0 0,5 0,0 0,5 0,0 0,5 0,0 0,5 0,0 0,5 0,0 0,5 0,0 0,5 0,0 0,5 0,0 0,0	т, H-м 1 2 1000 300 водвигатель ВSH	елем LXM 32 • US 0 5000 070 3T	7000 900 Скорость, об/м
Момент, Н-м 1,6 1,6 1,2 1,2 1,0 0,8 0,6 2 0,4 0,2 0,0 0,1000 Серводвигатели	3000 5000 7000 90 Скорость, об,	Момент, Н-м 3,0 м _{мах} 1 2,0 1,5 0 0 1000 мин Серводвига С сервопрео	бразователем L	XM 32∙U90M2 5000 7000 Скорос	Момен 3.5 М _{мах} 2.5 2,0 1,0 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0	т, H-м 1 2 1000 300 водвигатель ВSH вопреобразоват	елем LXM 32 • US	7000 900 Скорость, об/м
ломент, Н-м 1,6 1,6 1,2 1,2 1,0 0,8 0,6 2 0,4 0,2 0 0 1000 Серводвигателі	3000 5000 7000 90 Скорость, об,	Момент, Н-м 3,0 м _{мах} 1 2,0 1,5 0 0,5 0 0 1000 мин Серводвига С сервопрео	бразователем L 3000 3000	XM 32∙U90M2 5000 7000 Скорос	Момен 3.5 м. м. 2,5 2,0 2,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1	т, H-м 1 2 1000 300 водвигатель ВSH вопреобразоват	елем LXM 32 • US 0 5000 070 3T	7000 900 Скорость, об/м
Момент, Н-м 1,6 1,6 1,2 1,0 0,8 0,6 2 0,4 0,2 0,1 00 Серводвигатели С сервопреобра:	3000 5000 7000 90 Скорость, об,	Момент, Н-м 3,0 м _{мах} 1 2,0 1,5 0 0 1000 мин Серводвига С сервопрео	бразователем L 3000 3000	XM 32∙U90M2 5000 7000 Скорос	Момен 3.5 м. м. 2,5 2,0 2,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1	т, H-м 1 2 1000 300 водвигатель ВSH вопреобразоват	елем LXM 32 • US 0 5000 070 3T	7000 900 Скорость, об/м
Момент, Н-м 1,6 1,7 1,2 1,0 0,8 0,6 0,6 0,4 0,2 0 1000 Серводвигателі С сервопреобраз Момент, Н-м 4,0 1	3000 5000 7000 90 Скорость, об,	Момент, Н-м 3,0 м _{мах} 1 2,0 1,5 м _о 0,5 0 0 1000 Серводвига С сервопрео Момент, Н-м м _{мах} 1 1	бразователем L 3000 3000	XM 32∙U90M2 5000 7000 Скорос	Момен 3.5 мммах 2,5 2,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1	т, H-м 1 2 1000 300 водвигатель ВSH вопреобразоват	елем LXM 32 • US 0 5000 070 3T	7000 900 Скорость, об/м
Момент, Н-м 1,6 1,0 1,2 1,0 0,8 0,6 2 0,4 0,2 0 0 1000 Серводвигатели С сервопреобра: Момент, Н-м 4,0 1 3,0	3000 5000 7000 90 Скорость, об,	Момент, Н-м 3,0 М _{тах} 1 2,0 1,5 М _о 0,5 0 0 1000 Серводвига С сервопрео Момент, Н-м М _{тах} 8 1 1 6	бразователем L 3000 3000	XM 32∙U90M2 5000 7000 Скорос	Момен 3.5 мммах 2,5 2,0 мм 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	т, H-м 1 2 1000 300 водвигатель ВSH вопреобразоват	елем LXM 32 • US 0 5000 070 3T	7000 900 Скорость, об/м
Момент, Н-м 1,6 1,6 1,2 1,0 0,8 0,6 2 0,4 0,2 0 0 1000 Серводвигатели С сервопреобра: Момент, Н-м 4,0 4,0 2,5	3000 5000 7000 90 Скорость, об,	Момент, Н-м 3,0 М _{тах} 2,0 1,5 0,5 0,0 0 1000 Серводвига С сервопрео Момент, Н-м 8 1 1 5 1 1 1 1 1 1 1 1 1 1	бразователем L 3000 3000	XM 32∙U90M2 5000 7000 Скорос	Момен 3.5 мм мах 2,5 2,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1	т, H-м 1 2 1000 300 водвигатель ВSH вопреобразоват	елем LXM 32 • US 0 5000 070 3T	7000 900 Скорость, об/м
Момент, Н-м 1,6 1,6 1,2 1,0 0,8 0,6 2 0,4 0,2 0 0 1000 Серводвигатели С сервопреобра: Момент, Н-м 4,0 1 3,0 2,5 2,0	3000 5000 7000 90 Скорость, об,	Момент, Н-м 3,0 М _{тах} 2,0 1,5 0,5 0,0 0 1000 Серводвига С сервопрео Момент, Н-м 8 1 4	бразователем L 3000 3000	XM 32∙U90M2 5000 7000 Скорос	Момен 3.5 мммах 2,5 2,0 мм 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	1 1000 300 зодвигатель ВSH вопреобразоват т, н-м	елем LXM 32 • US 0 5000 070 3T	7000 900 Скорость, об/м
Момент, Н-м 1,6 1,6 1,2 1,0 0,8 0,6 2 0,4 0,2 0 1000 Серводвигателі С сервопреобраз Момент, Н-м 4,0 1 3,0 2,5 2,0 Момент, Н-м	3000 5000 7000 90 Скорость, об,	Момент, Н-м 3,0 м _{max} 1 2,0 1,5 0,5 0,5 0 1000 мин Серводвига С сервопрео момент, Н-м м _{max} 1 1 2,0 4 3,0 4 3,0 4 3,0 4 3,0 4 3,0 4 3,0 4 3,0 4 4 3,0 4 4 3,0 4 4 4 3,0 4 4 4 3,0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	бразователем L 3000 3000	XM 32∙U90M2 5000 7000 Скорос	Момен 3.5 ммма 2,5 2,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1	т, H-м 1 2 1000 300 водвигатель ВSH вопреобразоват	елем LXM 32 • US 0 5000 070 3T	7000 900 Скорость, об/м
Момент, Н-м 1,6 1,6 1,2 1,0 0,8 0,6 2 0,4 0,2 0 0 1000 Серводвигатели С сервопреобра: Момент, Н-м 4,0 1 3,0 2,5 2,0 М _м 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3000 5000 7000 90 Скорость, об,	Момент, Н-м 3,0 М _{тах} 1 2,0 1,5 М _о 0,5 0 0 1000 Серводвига С сервопрео Момент, Н-м М _{тах} 1 4 3 4 3 4 3 2	бразователем L 3000 3000	XM 32∙U90M2 5000 7000 Скорос	Момен 3.5 мм мах 2,5 2,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1	1 1000 300 зодвигатель ВSH вопреобразоват т, н-м	елем LXM 32 • US 0 5000 070 3T	7000 900 Скорость, об/м
Момент, Н-м 1,6 1,2 1,2 1,0 0,8 0,6 2 0,4 0,2 0 0 1000 Серводвигателі С сервопреобра: Момент, Н-м 4,0 4,0 2,5 2,0 Момент, Н-м 4,0 2,5 2,0 Момент, Н-м	3000 5000 7000 90 Скорость, об,	Момент, Н-м 3,0 м _{max} 1 2,0 1,5 0,5 0,5 0 1000 мин Серводвига С сервопрео момент, Н-м м _{max} 1 1 2,0 4 3,0 4 3,0 4 3,0 4 3,0 4 3,0 4 3,0 4 3,0 4 4 3,0 4 4 3,0 4 4 4 3,0 4 4 4 3,0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	бразователем L 3000 3000	XM 32∙U90M2 5000 7000 Скорос	Момен 3.5 ммма 2,5 2,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1	1 1000 300 зодвигатель ВSH вопреобразоват т, н-м	елем LXM 32 • US 0 5000 070 3T	7000 900 Скорость, об/и

- 1 Пиковый момент
- 2 Длительный момент

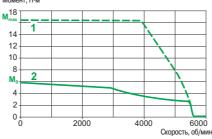
Описание: Каталожные номера: стр. 102 Размеры: стр. 106


Серводвигатели BSH Однофазное напряжение питания 230 В

Тип серводвига	теля			BSH 100 1T	BSH 100 2T		
Подключаемый	сервопреобра	зователь Lexium 32		LXM 32• D18M2	LXM 32● D30M2		
Настота коммута	ации		кГц	8			
Момент	Длительный при нулевой М _о скорости		Н∙м	2.7	5.8		
	Пиковый при нулевой скорости М _{мах}		Пиковый при нулевой скорости М		Н∙м	7.5	16.4
Номинальная	Номинальный момент		Н-м	2.2	3.7		
рабочая точка	<u>'</u>		об/мин	4000			
	Номинальная мощность на выходе серводвигателя		Вт	900	1500		
Лаксимальный 1	гок		А, действ.	18	30		
Характеристи	ки серводви	гателя					
Максимальная к настота вращені			об/мин	6000			
Постоянные при 120°C)	Момента		H⋅м/A, действ.	0.45	0.59		
	Обратной ЭД	C	В, действ./ 1000 об/мин	29	37		
Ротор	Число полюсо)B		8			
	Инерция	Без тормоза J _m	KГ·СМ ²	1.4	2.31		
		С тормозом J _m	кг∙см²	2.018	2.928		
татор	Сопротивлен	ие (межфазное)	Ом	0.87	0.56		
при 20°C)		ъ (межфазная)	мГн	4	3		

Серводвигатель BSH 100 1T

С сервопреобразователем LXM 32. ■ D18M2


Момент, Н⋅м

Серводвигатель BSH 100 2T

С сервопреобразователем LXM 32 • D30M2

Момент, Н⋅м

- Пиковый момент
- 2 Длительный момент

Серводвигатели BSH Трехфазное напряжение питания 400 В

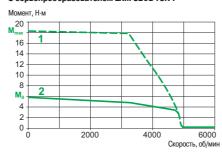
Тип серводвига	теля			BSH 055 1P	BSH 055 2P	BSH 055 3P	BSH 070 1P	BSH 070 2P	BSH 070 3F
Подключаемый	сервопреобра	зователь Lexium 32		LXM 32● U60N4			LXM 32● D12N4		LXM 32• D18N4
астота коммута	ции		кГц	8			·		·
Іомент	Длительный пр скорости	ри нулевой М _о	Н-м	0.5	0.8	1.05	1.4	2.2	3.1
	Пиковый при н	нулевой скорости M _{мах}	Н-м	1.5	2.5	3.5	3.5	7.6	11.3
оминальная	Номинальный	момент	Н∙м	0.48	0.65		1.32	1.64	2.44
абочая точка	Номинальная (скорость	об/мин	6000			5000		
Номинальная мощность на выходе серводвигателя			Вт	300	400		700	850	1300
lаксимальный т	ок		А, действ.	2.9	4.8	6	5.7	17	
Карактеристи	ки серводвиг	ателя							
Іаксимальная м астота вращени	еханическая		об/мин	9000			8000		
остоянные при 120°C)	Момента		H·м/А, действ.	0.7			0.8	0.77	0.78
	Обратной ЭДС		В, действ./ 1000 об/мин	40		41	46	48	49
отор	Число полюсо	В		6					
	Инерция	Без тормоза Ј	K Г∙СМ ²	0.059	0.096	0.134	0.25	0.41	0.58
		С тормозом J _m	кг∙см²	0.083	0.1173	0.1553	0.322	0.482	0.81
татор	Сопротивлени	е (межфазное)	Ом	41.8	17.4	10.4	10.4	4.2	2.7
ри 20°C)	Индуктивность	ь (межфазная)	мГн	71.5	35.3	25	38.8	19	13
Характеристи	ки момента/с	скорости							
			0						
Серводвигателі	BSH 055 1P		Серводвига	тель BSH 055 2P		Сер	водвигатель BSH	055 3P	
•		32•U60N4		тель BSH 055 2P бразователем L)			водвигатель BSH рвопреобразоват		60N4
сервопреобра		32•U60N4				С сеј			60N4
сервопреобра: омент, Н·м		32•U60N4	С сервопрео Момент, Н·м 3,0			С сеј Момег 4,0	рвопреобразоват		60N4
сервопреобра: омент, Н·м 1,6		32•U60N4	С сервопрео Момент, Н∙м			С сер Моме 4,0 - М _{мах} -	рвопреобразоват нт, Н·м		50N4
сервопреобра : омент, Н·м 1,6 max 1,2		32•U60N4	С сервопрео Момент, Н-м 3,0			С сер Моме 4,0 М _{мах} -	рвопреобразоват нт, Н·м		50N4
сервопреобра : омент, Н·м 1,6 1,2 1,0		32•U60N4	С сервопреоб Момент, Н-м 3,0 М _{max} 1			C cel Momen 4,0° M _{max} 3,0° 2,5°	рвопреобразоват нт, Н·м		50N4
сервопреобра: омент, Н·м 1,6 1,2 1,0 0,8		32•U60N4	С сервопреоб Момент, Н·м 3,0 М _{мах} 1			C cel Mome 4,0° M _{max} 3,0° 2,5° 2,0°	рвопреобразоват		50N4
сервопреобра: омент, Н-м 1,6 ———————————————————————————————————		32•U60N4	С сервопреоб Момент, Н-м 3,0 М _{max} 1			C cel Momes 4,0 M _{max} 3,0 2,5 2,0 1,5	рвопреобразоват нт, Н·м		SON4
сервопреобра: омент, Н-м 1,6 1,2 1,0 0,8 0,8 0,8 0,4		32•U60N4	С сервопрео Момент, Н-м 3,0 М _{тах} 1 2,0			Moment 4,0° M _{max} 3,0° 2,5° 2,0° 1,5° M ₀	рвопреобразоват		50N4
сервопреобра: омент, Н-м 1,6 1,6 1,2 1,0 0,8 0,8 0,8 0,4 0,2		32•U60N4	С сервопреоб Момент, Н-м 3,0 М _{мах} 1 1 2,0 1,5 М _о 2 0,5			C cel Momen 4,0 M _{max} 3,0 2,5 2,0 1,5 M ₀ 0,5	рвопреобразоват	елем LXM 32•U6	
Сервопреобраз Омент, Н-м 1,6 1,2 1,0 0,8 0,8 0,8 0,4			C cepsonpeol Moment, H-M 3,0 Mmax 1 2,0 1,5 Mo 0,5 0 1000	бразователем L)	CM 32•U60N4 5000 7000	C cel Mome 4,0 M _{max} 3,0 2,5 2,0 1,5 M ₀ 0,5	рвопреобразоват	елем LXM 32•U6	7000 900 Скорость, об/н
серводвигатели	3000 500 BSH 070 1P	00 7000 9000 Скорость, об/мин	С сервопреоб Момент, Н-м 3,0 м _{мах} 1 1 2,0 1,5 м ₀ 0,5 0 1000	бразователем LJ 3000 тель BSH 070 2P	XM 32●U60N4 5000 7000 Ckopoo	С сеј Моме 4,0 М _{мах} 3,0 2,5 2,0 1,5 М ₀ 0,5 0 15, об/мин	рвопреобразоватит, Н-м 1 2 2 3000 3000	елем LXM 32 • U6 0 5000 070 3Р	7000 900 Скорость, об/и
сервопреобра: 1,6 1,2 1,0 0,8 0,8 0,4 0,2 0 1000 Серводвигатели сервопреобра:	3000 500 BSH 070 1P	00 7000 9000 Скорость, об/мин	С сервопреов Момент, Н-м 3,0 м _{мах} 1 2,0 1,5 м ₀ 2 0,5 0 1000 Серводвига С сервопреов	бразователем LJ	XM 32●U60N4 5000 7000 Ckopoo	С сеј Момен 4,0 М _{мах} 3,0 2,5 2,0 1,5 М ₀ 0,5 0 0 ть, об/мин Сер С сеј	рвопреобразоват нт, Н-м 1 2 2 1000 3000 водвигатель ВSH рвопреобразоват	елем LXM 32 • U6 0 5000 070 3Р	7000 900 Скорость, об/я
сервопреобра: 1,6 1,6 1,2 1,0 0,8 0,8 0,4 0,2 0 0 1000 Серводвигатели сервопреобра:	3000 500 BSH 070 1P	00 7000 9000 Скорость, об/мин	С сервопреов Момент, Н-м 3,0 м 1 1 2,0 1,5 м 2 1,000 Серводвига С сервопреов Момент, Н-м	бразователем LJ 3000 тель BSH 070 2P	XM 32●U60N4 5000 7000 Ckopoo	С сеј Моме 4,0 М _{мах} 3,0 2,5 2,0 1,5 М ₀ 0,5 0 1,5,06/мин	рвопреобразоват нт, Н-м 1 2 1 1000 3000 водвигатель ВSH рвопреобразоват	елем LXM 32 • U6 0 5000 070 3Р	7000 900 Скорость, об/я
сервопреобра: 1,6 1,6 1,2 1,0 0,8 0,8 0,6 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	3000 500 BSH 070 1P	00 7000 9000 Скорость, об/мин	С сервопреоб Момент, Н-м 3,0 М _{тах} 2,0 1,5 М _о 0,5 0 1000 Серводвига С сервопреоб Момент, Н-м М _{тах} М _{тах}	бразователем LJ 3000 тель BSH 070 2P	XM 32●U60N4 5000 7000 Ckopoo	С сеј Момен 4,0 М _{мах} 3,0 2,5 2,0 1,5 М ₀ 0,5 0 0 ть, об/мин Сер С сеј Момен М ₂₂	рвопреобразоват нт, Н-м 1 2 2 1000 300 водвигатель ВSН рвопреобразоват	елем LXM 32 • U6 0 5000 070 3Р	7000 900 Скорость, об/я
сервопреобра: 1,6 1,6 1,2 1,0 0,8 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	3000 500 BSH 070 1P	00 7000 9000 Скорость, об/мин	С сервопреоб Момент, Н-м 3,0 1 2,0 1,5 0,0 0,5 0 1000 Серводвига С сервопреоб Момент, Н-м М _{мах} 7 1	бразователем LJ 3000 тель BSH 070 2P	XM 32●U60N4 5000 7000 Ckopoo	С сеј Моме 4,0 М _{мах} 3,0 2,5 2,0 1,5 М ₀ 0,5 0 1,5,06/мин	рвопреобразоват нт, Н-м 1 2 1 1000 3000 водвигатель ВSH рвопреобразоват	елем LXM 32 • U6 0 5000 070 3Р	7000 900 Скорость, об/я
сервопреобра: 1,1,6 1,2 1,0 0,8 0,6 0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	3000 500 BSH 070 1P	00 7000 9000 Скорость, об/мин	С сервопреоб Момент, Н-м 3,0 М _{тах} 1 2,0 1,5 М ₀ 0,5 0 1000 Серводвига С сервопреоб Момент, Н-м М _{тах} 7 1 1	бразователем LJ 3000 тель BSH 070 2P	XM 32●U60N4 5000 7000 Ckopoo	С сеј Момен 4,0 М _{мах} 3,0 2,5 2,0 1,5 М ₀ 0,5 0 0 ть, об/мин Сер С сеј Момен М ₂₂	рвопреобразоват нт, Н-м 1 2 2 1000 300 водвигатель ВSН рвопреобразоват	елем LXM 32 • U6 0 5000 070 3Р	7000 900 Скорость, об/я
сервопреобра: 1,1,6 1,6 1,2 1,0 0,8 0,8 0,6 0,4 0,2 0 0 1000 Серводвигатели сервопреобра: 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	3000 500 BSH 070 1P	00 7000 9000 Скорость, об/мин	С сервопреоб Момент, Н-м 3,0 1 2,0 1,5 0,0 0,5 0 1000 Серводвига С сервопреоб Момент, Н-м Ммах 7 1 6 5	бразователем LJ 3000 тель BSH 070 2P	XM 32●U60N4 5000 7000 Ckopoo	С сеј Моме 4,0 М _{мах} 3,0 2,5 2,0 1,5 М ₀ 0,5 0 0 Тъ, об/мин Сер С сеј Моме м12 10 8	рвопреобразоват нт, Н-м 1 2 2 1000 300 водвигатель ВSН рвопреобразоват	елем LXM 32 • U6 0 5000 070 3Р	7000 900 Скорость, об/и
сервопреобра: 1,1,6 1,2 1,0 0,8 0,6 0,6 0,0,4 0,2 0 0 1000 Серводвигатели сервопреобра: 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	3000 500 BSH 070 1P	00 7000 9000 Скорость, об/мин	С сервопреоб Момент, Н-м 3,0 м _{мах} 1 1 2,0 1,5 м ₀ 2 0,1000 Серводвига С сервопреоб Момент, Н-м м _{мах} 7 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	бразователем LJ 3000 тель BSH 070 2P	XM 32●U60N4 5000 7000 Ckopoo	С сеј Моме 4,0 М _{мах} 3,0 2,5 2,0 1,5 М ₀ 0,5 0 0 Тъ, об/мин Сер С сеј Моме М12 10 8 6	рвопреобразоват нт, Н-м 1 2 2 1000 300 водвигатель ВSН рвопреобразоват	елем LXM 32 • U6 0 5000 070 3Р	7000 900 Скорость, об/и
сервопреобра: 1,1,6 1,2 1,0 0,8 0,6 0,6 0,0,4 0,2 0 0 1000 Серводвигатели сервопреобра: 1,0,0,1 0,2 0,1 0,1 0,2 0,1 0,2 0,1 0,2 0,1 0,2 0,1 0,2 0,1 0,4 0,2 0,2 0,1 0,4 0,2 0,2 0,4 0,2 0,4 0,2 0,4 0,4 0,2 0,4 0,4 0,4 0,4 0,4 0,5 0,6 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7	3000 500 BSH 070 1P	00 7000 9000 Скорость, об/мин	С сервопреоб Момент, Н-м 3,0 1 2,0 1,5 0,0 0,5 0 1000 Серводвига С сервопреоб Момент, Н-м Ммах 7 1 6 5	бразователем LJ 3000 тель BSH 070 2P	XM 32●U60N4 5000 7000 Ckopoo	С сеј Момен 4,0 М _{мах} 3,0 2,5 2,0 1,5 Мо 0,5 0,5 0 0 С сеј Момен Мах 10 8 6 4 4	рвопреобразоват нт, Н-м 1 2 2 1000 300 водвигатель ВSН рвопреобразоват	елем LXM 32 • U6 0 5000 070 3Р	7000 900 Скорость, об/я
сервопреобра: 1,1,0 1,6 1,7 1,1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1	3000 500 BSH 070 1P	00 7000 9000 Скорость, об/мин	С сервопреоб Момент, Н-м 3,0 М _{тах} 1 2,0 1,5 М ₀ 0,5 0 1000 Серводвига С сервопреоб Момент, Н-м М _{тах} 7 1 6 5 4 3 М ₀ 2	бразователем LJ 3000 тель BSH 070 2P	XM 32●U60N4 5000 7000 Ckopoo	С сеј Моме 4,0 М _{мах} 3,0 2,5 2,0 1,5 М ₀ 0,5 0 0 Тъ, об/мин Сер С сеј Моме М12 10 8 6	рвопреобразоватит, Н-м 1 2 2 1000 3000 ВВОДВИГАТЕЛЬ ВЅН рвопреобразоватит, Н-м 1	елем LXM 32 • U6 0 5000 070 3Р	7000 900 Скорость, об/я
Серводвигатели Ссервопреобра: Момент, Н-м 4,0 1 3,0 2,5 2,0	3000 500 BSH 070 1P	00 7000 9000 Скорость, об/мин	С сервопреоб Момент, Н-м 3,0 м _{мах} 1 2,0 1,5 0,5 0 1000 Серводвига С сервопреоб Момент, Н-м м _{мах} 7 1 1 6 5 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	бразователем LJ 3000 тель BSH 070 2P	XM 32●U60N4 5000 7000 Ckopoo	Ссеј Момен 9000 ть, об/мин Сер Ссеј Момен Минах 10 8- 6- 4. Мо	рвопреобразоват нт, H-м 2 2 3 1000 3000 водвигатель ВSH ровопреобразоват нт, H-м 1 2 2 2 3 4 5 7 8 8 8 8 8 8 8 8 8 8 8 8	елем LXM 32 • U6 0 5000 070 3Р	7000 900 Скорость, об/я

- 1 Пиковый момент
- Длительный момент

Описание: Размеры: стр. 106 Каталожные номера: стр. 102

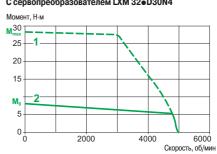
Серводвигатели BSH Трехфазное напряжение питания 400 В

Тип серводвига	ателя			BSH 100 1P	BSH 100 2P	BSH 100 3P	BSH 100 4P		
Подключаемый	і сервопреобра	зователь Lexium 32		LXM 32• D18N4	LXM 32● D30N4				
Настота коммут	ации		кГц	8		·			
Момент	Длительный г скорости	при нулевой М _о	Н∙м	3.3 5.8	8	10			
	Пиковый при	нулевой скорости M _{мах}	Н∙м	9.6	18.3	28.3	37.9		
Номинальная	Номинальный	і́ момент	Н-м	2.7	4	6.3	8.3		
рабочая точка	Номинальная скорость		об/мин	4000		3000	2500		
	Номинальная серводвигате	мощность на выходе ля	Вт	1100	1700	2000	2100		
Лаксимальный ток А, дейс				12	17.1	28.3	30		
Характерист	ики серводви	гателя							
Максимальная і настота вращен			об/мин	6000					
Постоянные (при 120°C)	Момента		H·м/A, действ.	0.89	1.21	1.22	1.62		
	Обратной ЭДС		Обратной ЭДС		В, действ./ 1000 об/мин	60	77		103
Ротор	Число полюсо)B		8					
	Инерция	Без тормоза J _m	KГ•CM ²	1.4	2.31	3.22	4.22		
		С тормозом Ј,	кг∙см²	2.018	2.928	3.838	5.245		
	Сопротивлен	ие (межфазное)	Ом	3.8	2.4	1.43	1.81		
Статор при 20°C)				17.6	12.7	8.8	11.8		

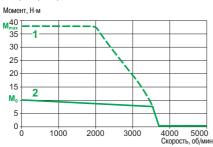

Серводвигатель BSH 100 1P

С сервопреобразователем LXM 32 • D18N4

12 2000 6000 Скорость, об/мин


Серводвигатель BSH 100 2P

С сервопреобразователем LXM 32 • D18N4


Серводвигатель BSH 100 3P

С сервопреобразователем LXM 32 • D30N4

Серводвигатель BSH 100 4P

С сервопреобразователем LXM 32. D30N4

- Пиковый момент
- Длительный момент

Серводвигатели BSH Трехфазное напряжение питания 400 В

Тип серводвига	теля				BSH 140 1P	BSH 14	0 2T	BSH 140 3T	BSH 140 4P
Подключаемый	сервопреобра	зователь Lexiun	n 32		LXM 32• D30N4	LXM 32 D72N4	•		
Настота коммута	ации			кГц	8				
Момент	Длительный пр скорости	ои нулевой	M _o	Н-м	11.1	19.5		27.8	33.4
	Пиковый при н	улевой скорости	M _{max}	Н-м	27	59.3		90.2	103.6
Номинальная	Номинальный	момент		Н∙м	9.5	12.3		12.9	19
рабочая точка	Номинальная	скорость		об/мин	2500	3000			2500
	Номинальная серводвигател	мощность на выхо ія	оде	Вт	2500	3900		4100	5000
Максимальный т	аксимальный ток			А, действ.	20.8	72			
Характеристи	ки серводвиг	ателя							
Максимальная м частота вращені				об/мин	4000				
Постоянные (при 120°C)	Момента			H·м/A, действ.	1.43	1.47		1.58	1.57
	Обратной ЭДС	;		В, действ./ 1000 об/мин	100	101		105	104
Ротор	Число полюсо	В			10				
	Инерция	Без тормоза	J _m	KГ∙СМ ²	7.41	12.68		17.94	23.7
		С тормозом	J _m	кг∙см²	9.21	14.48		23.44	29.2
Статор	Сопротивлени	е (межфазное)		Ом	1.41	0.6		0.4	0.28
(при 20°С)	Индуктивност	ь (межфазная)		мГн	15.6	7.4		5.1	3.9
Характеристи		корости							
Серводвигател					гель BSH 140 2T			водвигатель BSH 1	
С сервопреобра	зователем LXM	32•D30N4			бразователем LXM :	32●D72N4			1ем LXM 32•D72N4
Момент, Н-м				Момент, Н⋅м				Ломент, Н∙м	
M _{max}				70 M _{max} 1			M _{max} 90		
25 1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			50			70	1	
20				40			60		
15							50 40		
M ₀ 2				30 2			M ₀	_2	
5				M ₀			20		
				10			10		
0 10	00 2000	3000	4000	0			0	0 1000	2000 3000 400

Серводвигатель BSH 140 4P

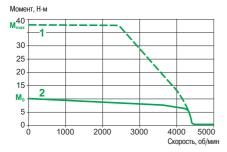
Момент, Н-м 90 T M_{max} + 70 + 60 50 40 Mo 20 10 1000 2000 3000 4000 Скорость, об/мин

- Пиковый момент
- Длительный момент

Серводвигатели BSH Трехфазное напряжение питания 480 В

Тип серводвига	теля				BSH 055 1P	BSH 055 2P	BSH 055 3P	BSH 070 1P	BSH 070 2P	BSH 070 3P
Подключаемый	сервопреобра	зователь Lexiu	ım 32		LXM 32• U60N4			LXM 32● D12N4		LXM 32• D18N4
астота коммута	ции			кГц	8			·		·
Ломент	Длительный п скорости	ои нулевой	M _o	Н∙м	0.5	0.8	1.05	1.4	2.2	3.1
	Пиковый при н	улевой скорості	и M _{max}	Н∙м	1.5	2.5	3.5	3.5	7.6	11.3
оминальная	Номинальный	момент		Н-м	0.48	0.65		1.32	1.64	2.44
абочая точка	Номинальная	скорость		об/мин	6000			5000		
	Номинальная мощность на выходе серводвигателя		Вт	300	400		700	850	1300	
Л аксимальный т	ОК			А, действ.	2.9	4.8	6	5.7	11.8	17
Характеристи	ки серводвиг	ателя			_					
Лаксимальная м астота вращени				об/мин	9000			8000		
Іостоянные при 120°C)	Момента			H·м/A, действ.	0.7			0.8	0.77	0.78
	Обратной ЭДС	;		В, действ./ 1000 об/мин	40		41	46	48	49
отор	Число полюсо	В			6					
	Инерция	Без тормоза	J _m	K Г∙СМ ²	0.059	0.096	0.134	0.25	0.41	0.58
		С тормозом	J _m	KГ∙СМ ²	0.0803	0.1173	0.1553	0.322	0.482	0.81
татор	Сопротивлени	е (межфазное)		Ом	41.8	17.4	10.4	10.4	4.2	2.7
іри 20°С)	Индуктивност	ь (межфазная)		мГн	71.5	35.3	25	38.8	19	13
Характеристи	ки момента/с	корости			'					
Серводвигатель	BSH 055 1P			Серводвига	тель <mark>BSH</mark> 055 2F)	Ce	рводвигатель BSI	I 055 3P	
сервопреобраз	вователем LXM	32•U60N4		С сервопрео	бразователем L	XM 32•U60N4	Cc	ервопреобразова	гелем LXM 32•U6	30N4
Момент, H⋅м				Момент, Н⋅м			Мом	іент, Н∙м		
1,6				3,0			4,0			
1				M _{max} 1			M _{ma}	x		
1,2				2,0			3,0	1 1 1 1		
1,0				.			2,5	1 1 1 1		
0,8				1,5			2,0	1 1 1 1		
M ₀ 2				M ₀ 2			1,5 M			
0,4				0,5			0,5			
0,2				0						
0 1000	3000 500		9000 сть, об/мин	0 1000	3000	5000 7000 Скоро	9000 ость, об/мин	0 1000 300	5000	7000 9000 Скорость, об/м
Серводвигатель				•	тель BSH 070 2F			рводвигатель BSI		
Сервопреобраз	вователем LXM	32•D12N4			бразователем L	XM 32•D12N4		ервопреобразова	гелем LXM 32•D1	18N4
Іомент, Н⋅м				Момент, Н⋅м				іент, Н⋅м		
4,0 1 _{max} 1				M _{max} 7 1		+-	M _{ma}			
3,0				6			10	' 	+ + +	
2,5		\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u> </u>	5				3	+	+
2,0				4				3 4 4		
M ₀ 2				3			<u> </u>			
				M ₀ 2			м	. 2		
1.0										
1,0				1				2		

- 1 Пиковый момент 2 Длительный момент


Каталожные номера: стр. 102 Описание: Размеры: стр. 106 стр. 88

Серводвигатели BSH Трехфазное напряжение питания 480 В

Тип серводвига	теля			BSH 100 1P	BSH 100 2P	BSH 100 3P	BSH 100 4P
Подключаемый	і сервопреобразо	ватель Lexium 32		LXM 32• D18N4		LXM 32• D30N4	
Настота коммута	ации		кГц	8		·	
Момент	Длительный при скорости	нулевой М _о	Н-м	3.3	5.8	8	10
	Пиковый при нул	евой скорости М _{мах}	Н-м	9.6	18.3	28.3	37.9
І оминальная	Номинальный мо	омент	Н-м	2.7	4	6.3	8.3
рабочая точка	Номинальная ско	рость	об/мин	4000			3000
	Номинальная мо серводвигателя	щность на выходе	Вт	1100	1700	2600	
Максимальный т	гок		А, действ.	12	17.1	28.3	30
Характеристи	ки серводвигат	геля					
Максимальная м настота вращени			об/мин	6000			
Постоянные (при 120°C)	Момента		H⋅м/A, действ.	0.89	1.21	1.22	1.62
	Обратной ЭДС		В, действ./ 1000 об/мин	60	77		103
Ротор	Число полюсов			8			
	Инерция	Без тормоза J _m	K Г∙СМ ²	1.4	2.31	3.22	4.22
		С тормозом J _m	KГ∙СМ ²	2.018	2.928	3.838	5.245
Статор	Сопротивление (межфазное)	Ом	3.8	2.4	1.43	1.81
при 20°C)	Индуктивность (г	межфазная)	мГн	17.6	12.7	8.8	11.8
	ики момента/ск	орости					
Серводвигател				тель BSH 100 2P		Серводвигатель BSH 100	
	зователем LXM 32	2●D18N4		бразователем LXM 3	2 • D18N4	С сервопреобразователе	M LXM 32•D30N4
Момент, Н∙м 12 ⊤			Момент, Н⋅м 20 т			Момент, H·м м _{мах}	
			M _{max}		_	M _{max} 25 1	
M _{max} 1			16 — 1 — 14				
8			12			20	
6			10 8			15	
M ₀ 2			8 M ₀ 2			M ₀ -2	<u> </u>
2			4			5	+++
			2			0	
0	2000	4000 6000	0	2000	4000 6000	0 2000	4000 60

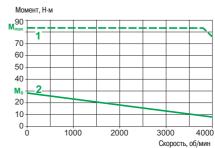
Серводвигатель BSH 100 4P

С сервопреобразователем LXM 32 • D30N4

- Пиковый момент
- Длительный момент

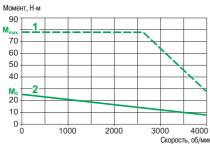
Описание: Каталожные номера: стр. 102 стр. 88

Размеры: стр. 106

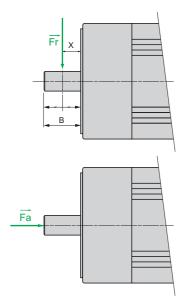

Серводвигатели BSH Трехфазное напряжение питания 480 В

Тип серводвига	теля			BSH 140 1P	BSH 140 2T	BSH 140 3T	BSH 140 4P			
Подключаемый	сервопреобра	зователь Lexium 32		LXM 32• D30N4	LXM 32● D72N4					
Настота коммута	щии		кГц	8						
Момент	Длительный п скорости	ри нулевой М _о	Н-м	11.1	19.5	27.8	33.4			
	Пиковый при н	нулевой скорости М _{мах}	Н∙м	27	59.3	90.2	103.6			
Номинальная	Номинальный	момент	Н∙м	9.5	12.3	12.9	19			
рабочая точка	Номинальная	скорость	об/мин	3000			2500			
	Номинальная серводвигател	мощность на выходе пя	Вт	3000	3900	4100	5000			
Максимальный т	ток		А, действ.	20.8	72					
Характеристи	ки серводвиг	ателя								
Максимальная механическая частота вращения		об/мин	4000							
Постоянные при 120°C)	Момента		H·м/A, действ.	1.43	1.47	1.58	1.57			
	Обратной ЭДО		В, действ./ 1000 об/мин	100	101	105	104			
Ротор	Число полюсо	В		10						
	Инерция	Без тормоза J _m	KГ•CM ²	7.41	12.68	17.94	23.7			
		С тормозом Ј _т	K Г∙СМ ²	9.21	14.48	23.44	29.2			
Статор	Сопротивлени	е (межфазное)	Ом	1.41	0.6	0.4	0.28			
при 20°C)	Индуктивност	ь (межфазная)	мГн	15.6	7.4	5.1	3.9			
Характеристи	ки момента/с	скорости								
Серводвигател	BSH 140 1P		Серводвигат	гель BSH 140 2T		Серводвигатель BSH 14	03T			
С сервопреобра	зователем LXM	32•D30N4	С сервопреоб	бразователем LXM 3	2●D72N4	С сервопреобразователе	ем LXM 32•D72N4			
Момент, Н⋅м			Момент, Н⋅м	1		Момент, Н∙м				

20 15 2 0 3000 4000 Скорость, об/мин 2000



Скорость, об/мин


Серводвигатель BSH 140 4P

С сервопреобразователем LXM 32 • D72N4

- 1 Пиковый момент
- Длительный момент

(продолжение)

Допустимые радиальные и осевые усилия на валу двигателя

Даже при оптимальных условиях эксплуатации серводвигателей их срок службы ограничивается сроком службы подшипников.

Условия	
Номинальный срок службы подшипников (1)	L _{10h} = 20000 часов
Температура окружающей среды (температура подшипников 100°C)	40°C
Точка приложения усилий	Fr прикладывается в середине выступающего конца вала X = B/2 (размер B, см. стр. 106)

(1) В часах, с вероятностью отказа 10%.

А Должны соблюдаться следующие условия:

- Радиальные и осевые усилия не должны прикладываться одновременно
 Конец вала должен иметь степень защиты IP 50 или IP 65
- Замена подшипников не может выполняться пользователем, поскольку в случае их демонтажа необходимо перенастраивать датчик положения

			Максимал	тьное радиа	альное усил	ие Fr				
Механическая частота вращения		об/мин	1000	2000	3000	4000	5000	6000	7000	8000
Серводвигатель	BSH 0551	Н	340	270	240	220	200	190	180	170
	BSH 0552	Н	370	290	260	230	220	200	190	190
	BSH 0553	Н	390	310	270	240	230	210	200	190
	BSH 0701	Н	660	520	460	410	380	360	-	-
	BSH 0702	Н	710	560	490	450	410	390	-	-
	BSH 0703	Н	730	580	510	460	430	400	-	-
	BSH 1001	Н	900	720	630	570	530	-	-	-
	BSH 1002	Н	990	790	690	620	-	-	-	-
	BSH 1003	Н	1050	830	730	660	_	-	-	-
	BSH 1004	Н	1070	850	740	-	-	-	-	-
	BSH 1401	Н	2210	1760	1530	-	-	-	-	-
	BSH 1402	Н	2430	1930	1680	-	-	-	-	-
	BSH 1403	Н	2560	2030	1780	-	-	-	-	-
	BSH 1404	Н	2660	2110	1840	-	-	-	-	-
		Максим	альное осе	вое усилие:	$Fa = 0.2 \times F$	r				

Описание: стр. 88

Каталожные номера: стр. 102

Размеры: стр. 106

(продолжение)

Предварительно собранные соединительные кабели	с разъемом н	а стороне серводвигателя					
Тип соединительного кабеля		VW3 M5 101 R•••	VW3 M5 103 Reee				
 Внешняя оболочка, изоляция		Полиуретан оранжевого цвета RAL 2003, TPM или	PP/PE				
Емкость	пФ/м	< 70 (проводник/экран)	·				
(оличество проводников (экранированных)		$[(4 \times 1.5 \text{ mm}^2) + (2 \times 1 \text{ mm}^2)]$	$[(4 \times 4 \text{ mm}^2) + (2 \times 1 \text{ mm}^2)]$				
Гип разъема		1 промышленный разъем M23 со стороны серводвигателя и 1 свободный конец с гибкими выводами со стороны сервопреобразователя	1 промышленный разъем М40 со стороны серводвигателя и 1 свободный конец с гибким выводами со стороны сервопреобразователя				
Внешний диаметр	мм	12 ± 0.2	16.3 ± 0.3				
•адиус изгиба	мм	90, пригоден для шлейфового соединения и кабеленесущих систем	125, пригоден для шлейфового соединения и кабеленесущих систем				
Рабочее напряжение	В	600					
Лаксимальная длина	М	75 (1)					
Рабочая температура	°C	- 40+ 90 (стационарная прокладка), - 20+ 80 (подвижная прокладка)				
Сертификаты		UL, CSA, VDE, C€, DESINA					
Кабели без разъемов							
Тип кабеля		VW3 M5 301 R ••••	VW3 M5 303 Reese				
внешняя оболочка, изоляция		Полиуретан оранжевого цвета RAL 2003, TPM или	PP/PE				
МКОСТЬ	пФ/м	< 70 (проводник/экран)	,				
оличество проводников (экранированных)		[(4 x 1.5 mm²) + (2 x 1 mm²)]	$[(4 \times 4 \text{ MM}^2) + (2 \times 1 \text{ MM}^2)]$				
ип разъема		Отсутствует, см. стр. 105	[()				
Внешний диаметр	мм	12 ± 0.2	16.3 ± 0.3				
Радиус изгиба	мм	90, пригоден для шлейфового соединения и кабеленесущих систем	125, пригоден для шлейфового соединения и кабеленесущих систем				
Рабочее напряжение	В	600					
Лаксимальная длина	М	100					
абочая температура	°C	- 40+ 90 (стационарная прокладка), - 20+ 80 (подвижная прокладка)					
Сертификаты		UL, CSA, VDE, C€, DESINA					
Характеристики кабелей цепей управлени Предварительно собранные соединительные кабели		нения серводвигателя и сервоп					
Тип соединительного кабеля	одгуни расса	VW3 M8 102 R					
ип датчика положения ротора		SinCos					
внешняя оболочка, изоляция		Полиуретан зеленого цвета RAL 6018, полипропил	пал				
(оличество проводников (экранированных)		$[3 \times (2 \times 0.14 \text{ mm}^2) + 1 \times (2 \times 0.34 \text{ mm}^2)]$	iich				
		6.8 ± 0.2					
Внешний диаметр	ММ	0.0 ± 0.2 1 промышленный разъем М23 (серводвигатель) и	1 non ou DIAE (connemno é nocessari)				
ип разъема			,				
Минимальный радиус изгиба	В	68, пригоден для шлейфового соединения и кабел 300 (0.14 мм² и 0.34 мм²)	енесущих систем				
Рабочее напряжение	_	, ,					
Максимальная длина	M	75 (1)	(
Рабочая температура	Č	- 40+ 80 (стационарная прокладка), - 20+ 80	(подвижная прокладка)				
Сертификаты		UL, CSA, VDE, C€, DESINA					
Кабели без разъемов		1840 MO 000 B					
Тип кабеля		VW3 M8 222 R●●●					
ип датчика положения ротора		SinCos					
нешняя оболочка, изоляция		Полиуретан зеленого цвета RAL 6018, полипропил	пен				
оличество проводников (экранированных)		$[3 \times (2 \times 0.14 \text{ MM}^2) + 1 \times (2 \times 0.34 \text{ MM}^2)]$					
Внешний диаметр	ММ	6.8 ± 0.2					
ип разъема		Отсутствует, см. стр. 105					
Линимальный радиус изгиба	ММ	68, пригоден для шлейфового соединения и кабел	енесущих систем				
Рабочее напряжение	В	300 (0.14 мм² и 0.34 мм²)					
Максимальная длина	М	100					
Рабочая температура	°C	- 40+ 80 (стационарная прокладка), - 20+ 80	(подвижная прокладка)				

(1) При длине кабеля более 75 м обращайтесь в Schneider Electric.

 Описание:
 Каталожные номера:
 Размеры:

 стр. 88
 стр. 102
 стр. 106

BSH 05500 000 1A

BSH 070 • • • 1A

Серводвигатели BSH

Указанные ниже серводвигатели BSH поставляются без редуктора Описание и характеристики редукторов GBX приведены на стр. 110

Длительный момент при нулевой скорости	Пиковый момент при нулевой скорости	Номинальная выходная мощность двигателя	Номинальная скорость	Макс. механи- ческая скорость	С преобразо- вателем LXM 32	№ по каталогу (1)	Macca (2)
Н-м	Н-м	Вт	об/мин	об/мин			КГ
0.5	1.4	300	6000	9000	●U45M2	BSH 0551T ●●●●A	1.160
	1.5	150	3000	9000	●U90M2	BSH 0551T ●●●●A	1.160
		300	6000	9000	●U60N4	BSH 0551P ••••A	1.160
0.8	1.9	250	3000	9000	●U90M2	BSH 0552T ●●●A	1.470
	2.5	450	6000	9000	●U90M2	BSH 0552T ●●●A	1.470
		400	6000	9000	●U60N4	BSH 0552P ●●●A	1.470
1.05	3.5	400	6000	9000	●U60N4	BSH 0553P ●●●A	1.760
1.2	3	550	6000	9000	●U90M2	BSH 0553T ●●●A	1.760
	3.3	350	3000	9000	●D18M2	_	
1.3	3.5	500	5000	8000	●U90M2	BSH 0701T ••••A	2.200
1.4	3.5	350	2500	8000	●D18M2	BSH 0701T ●●●●A	2.200
		700	5000	8000	●D12N4	BSH 0701P ••••A	2.200
2.2	6.1	550	2500	8000	●D30M2	BSH 0702T ●●●A	2.890
	7.2	950	5000	8000	●D18M2	_	
	7.6	850	5000	8000	●D12N4	BSH 0702P ●●●●A	2.890
2.6	7.4	900	4000	8000	●D18M2	BSH 0703T ●●●A	3.620
2.7	7.5	900	4000	6000	●D18M2	BSH 1001T ••••A	4.200
3.1	11.3	1300	5000	8000	●D18N4	BSH 0703P ●●●A	3.620

BSH 100 •• •• 1A

⁽¹⁾ Варианты завершения каждого каталожного номера приведены в таблице на стр. 103. (2) Масса серводвигателя без тормоза и без упаковки. Масса серводвигателя с удерживающим тормозом приведена на стр. 108.

(продолжение)

BSH 1401P ••• 1A

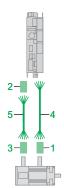
Серводви	гатели вън	(продолжение)					
Длительный момент при нулевой скорости	Пиковый момент при нулевой скорости	Номинальная выходная мощность двигателя	Номинальная скорость	Макс. механи- ческая скорость	С преобразователем LXM 32	№ по каталогу (1)	Macca (2)
Н-м	Н∙м	Вт	об/мин	об/мин			КГ
3.3	6.3	700	2500	6000	●D30M2	BSH 1001T ••••A	4.200
	9.6	1100	4000	6000	●D18N4	BSH 1001P ••••A	4.200
5.8	16.4	1500	4000	6000	●D30M2	BSH 1002T ●●●●A	5.900
	18.3	1700	4000	6000	●D18N4	BSH 1002P ••••A	5.900
8	28.3	2000	3000	6000	●D30N4	BSH 1003P ●●●●A	7.400
		2600	4000	6000	●D30N4	BSH 1003P ●●●A	7.400
10	37.9	2100	2500	6000	●D30N4	BSH 1004P ●●●A	9.500
		2600	3000	6000	●D30N4	BSH 1004P ●●●●A	9.500
11.1	27	2500	2500	4000	●D30N4	BSH 1401P ••••A	11.200
		3000	3000	4000	●D30N4	BSH 1401P ••••A	11.200
19.5	59.3	3900	3000	4000	●D72N4	BSH 1402T ●●●P	16.000
27.8	90.2	4100	3000	4000	●D72N4	BSH 1403T ●●●P	21.200
33.4	103.6	5000	2500	4000	●D72N4	BSH 1404P ••••P	26.500

		BSH 1	401P	•	•	•	•	•
Конец вала	IP 50	Гладкий		0				
		Со шпонкой		1				
	IP 65	Гладкий		2				
		Со шпонкой		3		A		
Встроенный датчик положения ротора	Однооборотный, SinCos Hiperface® 131 072 точки/оборот (3)				1			
		ий, SinCos Hiperface® оборот x 4096 оборотов (3)			2			
У держивающий	Без тормоза					Α		
	Со встроенным	тормозом				F		
Разъемы	Прямые						1	
	Вращаемые угл	овые					2	
Фланец	В соответствии	с международными стандартами						А или I

Примечание: пример приведен для серводвигателя BSH 1401P. Для других серводвигателей BMH 1401P заменяется на соответствующий каталожный

Варианты завершения каждого каталожного номера приведены в таблице на данной странице.
 Масса серводвигателя без тормоза и без упаковки. Масса серводвигателя с удерживающим тормозом приведена на стр. 108.
 Разрешение датчика приводится для работы с сервопреобразователем Lexium 32.
 "А" или "Р" в зависимости от модели; см. таблицу каталожных номеров, приведенную выше.

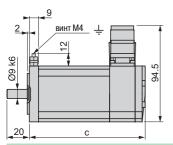
(продолжение)

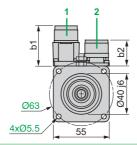


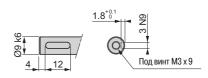
Соединительные элем	енты					
Предварительно собранные	соединител	ьные кабели для по	дключения сил	овых цепей	i	
Описание	Серво- двигатель	Серво- преобразователь	Сечение проводников	Длина	№ по каталогу	Macca
				М		КГ
Кабель с одним промышленным	BSH 055●● BSH 070●● BSH 100●●	LXM 32••••• в зависимости от сочетания	$[(4 \times 1.5 \text{ MM}^2)]$	1.5	VW3 M5 101 R15	0.600
разъемом M23 Для серводвигателя)			+ (2 x 1 мм²)]	3	VW3 M5 101 R30	0.810
дія серводвиї ателя)	BSH 1401P	(см. стр. 90 - 99)	(Z X I WIWI)]	5	VW3 M5 101 R50	1.210
				10	VW3 M5 101 R100	2.290
				15	VW3 M5 101 R150	3.400
				20	VW3 M5 101 R200 VW3 M5 101 R250 VW3 M5 101 R500	4.510
				25		6.200
				50		12.325
				75	VW3 M5 101 R750	12.32 18.45
Кабель с одним промышленным	BSH 1402T	LXM 32●D30N4,	[(4 x 4 мм²)	3	VW3 M5 103 R30	1.330
разъемом М40	BSH 1403T BSH 1404P	●D72N4	+	5	VW3 M5 103 R50	2.130
для серводвигателя)	BSH 1404P	в зависимости от сочетания	(2 x 1 мм²)]	10	VW3 M5 103 R100	4.130
		(см. стр. 90 - 99)		15	VW3 M5 103 R150	6.120
				20	VW3 M5 103 R200	8.090
				25	VW3 M5 103 R250	11.625
				50	VW3 M5 103 R500	23.175
				75	VW3 M5 103 R750	34.725

Описание	Серво- двигатель	Серво- преобразователь	Сечение проводников	Длина	№ по каталогу	Macca
				М		КГ
Кабель для подключения	BSH ••••	LXM 32•••••	[3 x	1.5	VW3 M8 102 R15	0.400
тчика SinCos Hiperface® ромышленным разъемом M23 ия серводвигателя)			(2 x 0.14 mm ²) + (2 x 0.34 mm ²)]	3	VW3 M8 102 R30	0.500
				5	VW3 M8 102 R50	0.600
разъемом RJ45				10	VW3 M8 102 R100	0.900
: 8 + 2 контактами для сервопреобразователя)				15	VW3 M8 102 R150	1.100
діл осраопросоривовитолії				20	VW3 M8 102 R200	1.400
				25	VW3 M8 102 R250	1.700
				50	VW3 M8 102 R500	3.100
				75	VW3 M8 102 R750	4.500

(продолжение)

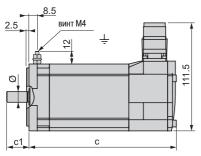


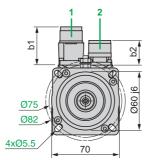

Соединительные элем	ІЕНТЫ (продолжение)				
Разъемы для изготовления	соединительных кабелей подключения к си	ловым	цепям и це	епям управления	
Описание	Назначение	№ на рис.	Сечение кабеля	№ по каталогу	Macca
			MM ²		КГ
Промышленный разъем M23 силовые подключения (поставляется в комплекте по 5 шт.)	Серводвигатели BSH 055●•, BSH 070●•, BSH 100●• и BSH 1401P	1	1.5	VW3 M8 215	0.350
Промышленный разъем М40 силовые подключения (поставляется в комплекте по 5 шт.)	Серводвигатели BSH 1402T, BSH 1403T и BSH 1404P	1	4	VW3 M8 217	0.850
Разъем RJ45 с 8 + 2 контактами для подключения цепей управления (поставляется в комплекте по 5 шт.)	Сервопреобразователи LXM 32••••• (Разъем CN3)	2	-	VW3 M2 208	0.200
Промышленный разъем M23 подключение цепей управления (поставляется в комплекте по 5 шт.)	Серводвигатели BSH ◆◆◆◆◆	3	_	VW3 M8 214	0.350

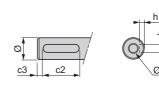

Описание	Серво- двигатель	Серво- преобразователь	Сечение проводников	№ на рис.	Длина	№ по каталогу	Масса
					М		КГ
Кабели для выполнения силовых подключений	BSH 055●● BSH 070●●	LXM 32••••• в зависимости от	[(4 x 1.5 мм²) +	4	25	VW3 M5 301 R250	5.550
	BSH 100●● BSH 1401P	сочетания (см. стр. 90 - 99)	(2 x 1 мм²)]		50	VW3 M5 301 R500	11.100
					100	VW3 M5 301 R1000	22.200
	BSH 1402T BSH 1403T	LXM 32•D30N4, •D72N4	[(4 x 4 mm²) +	4	25	VW3 M5 303 R250	9.900
	BSH 1404P		(2 x 1 мм ²)]		50	VW3 M5 303 R500	19.800
					100	VW3 M5 303 R1000	39.600
Кабели для создания подключений к датчикам SinCos Hiperface®	BSH ••••	LXM 32••••• в зависимости от	[3 x (2 x 0.14 mm²)	5	25	VW3 M8 222 R250	1.400
		сочетания (см. стр. 90 - 99)	+ (2 x 0.34 мм²)]		50	VW3 M8 222 R500	2.800
					100	VW3 M8 222 R1000	5.600

ВЅН 055 (пример серводвигателя с прямыми разъемами: силовое питание для серводвигателя/тормоза 1 и подключение датчика 2)

Конец вала, шпоночный паз (опция)

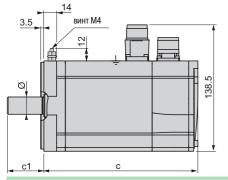


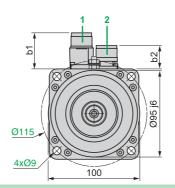


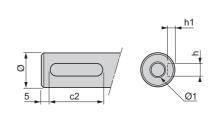

	Прямы	е разъемы	Вращае разъем	емые угловые ы		
	b1	b2	b1	b2	с (без тормоза)	с (с тормозом)
BSH 0551 ●	39.5	25.5	39.5	39.5	132.5	159
BSH 0552●	39.5	25.5	39.5	39.5	154.5	181
BSH 0553●	39.5	25.5	39.5	39.5	176.5	203

ВЅН 070 (пример серводвигателя с прямыми разъемами: силовое питание для серводвигателя/тормоза 1 и подключение датчика 2)

Конец вала, шпоночный паз (опция)

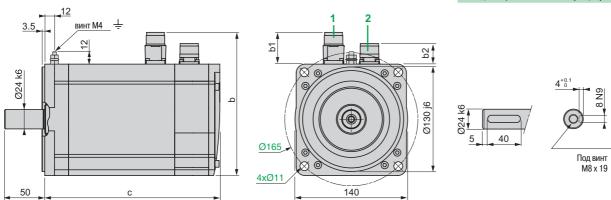






	Прямь	е разъемы	Враща разъем	емые угловые вы									
	b1	b2	b1	b2	с (без тормоза)	с (с тормозом)	c1	c2	c3	h	h1	Ø	Ø1 под винт
BSH 0701●	39.5	25.5	39.5	39.5	154	180	23	18	2.5	4 N9	2.5 $^{+0.1}_{0}$	11 k6	M4 x 10
BSH 0702●	39.5	25.5	39.5	39.5	187	213	23	18	2.5	4 N9	2.5 0 +0.1	11 k6	M4 x 10
BSH 0703●	39.5	25.5	39.5	39.5	220	254	30	20	5	5 N9	3 0 +0.1	14 k6	M5 x 12.5

BSH 100 (пример серводвигателя с прямыми разъемами: силовое питание для серводвигателя/тормоза 1 и подключение датчика 2) Конец вала, шпоночный паз (опция)

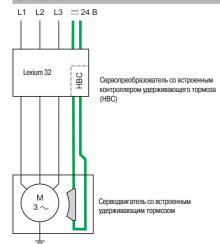

	Прямы			рямые разъемы Вращаемые угловые разъемы									
	b1	b2	b1	b2	с (без тормоза)	с (с тормозом)	c1	c2	h	h1	Ø	Ø1 под винт	
BSH 1001●	39.5	25.5	39.5	39.5	169	200	40	30	6 N9	3.5 0 0 1	19 k6	M6 x 16	
BSH 1002●	39.5	25.5	39.5	39.5	205	236	40	30	6 N9	3.5 0 0 1	19 k6	M6 x 16	
BSH 1003●	39.5	25.5	39.5	39.5	241	272	40	30	6 N9	3.5 0 +0.1	19 k6	M6 x 16	
BSH 1004●	39.5	25.5	39.5	39.5	277	308	50	40	8 N9	4 0 1	24 k6	M8 x 19	

 Описание:
 Характеристики:
 Каталожные номера:

 стр. 88
 стр. 90
 стр. 102

BSH 140 (пример серводвигателя с прямыми разъемами: силовое питание для серводвигателя/тормоза 1 и подключение датчика 2)

Конец вала, шпоночный паз (опция)


	Прямы	е разъемь	ıl	Вращае разъем	емые угло ы	вые		
	b	b1	b2	b	b1	b2	с (без тормоза)	с (с тормозом)
BSH 1401P	178	39.5	25.5	178	39.5	39.5	218	256
BSH 1402T	192.5	54	25.5	198.5	60	39.5	273	311
BSH 1403T	192.5	54	25.5	198.5	60	39.5	328	366
BSH 1404P	192.5	54	25.5	198.5	60	39.5	383	421

Schneider Belectric

Встроенный удерживающий тормоз

Удерживающий тормоз

Описание

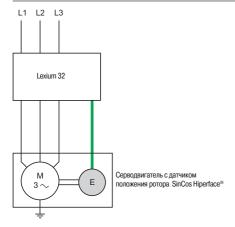
Встроенный в серводвигатель BSH удерживающий тормоз представляет собой электромагнитный тормоз с нажимными пружинами, блокирующий вал серводвигателя после отключения тока питания серводвигателя.

В аварийных случаях, например, при отключении питания или аварийной остановке, вал двигателя стопорится, что значительно увеличивает безопасность сервопривода. Блокировка вала серводвигателя также необходима при перегрузке по моменту, что может происходить при перемещении в вертикальной плоскости.

Сервопреобразователь Lexium 32 в стандартном исполнении оснащен встроенным контроллером удерживающего тормоза, усиливающим команды управления тормозом, что позволяет быстро его отключать. При дальнейшей работе уровень управляющего сигнала снижается для уменьшения рассеиваемой в тормозе энергии.

Характеристики								
Тип серводвигателя	BSH	0551, 0552, 0553	0701, 0702	0703	1001, 1002, 1003	1004	1401, 1402	1403, 1404
Удерживающий момент M _{Br}	Н∙м	0.8	2	3	9	12	23	36
Момент инерции ротора (только тормоз) J _{Br}	кг•см²	0.0213	0.072	0.227	0.618	1.025	1.8	5.5
Электрическая мощность фиксации P _{вг}	Вт	10	11	12	18	17	24	26
Номинальный ток	A	0.42	0.46	0.5	0.75	0.71	1	1.08
Напряжение питания	В	24 +6/-10%						
Время включения (открытия)	мс	12	25	35	40	45	50	100
Время отключения (закрытия)	мс	6	8	15	20	20	40	45
Масса (добавляется к массе серводвигателя без удерживающего тормоза, см. стр. 102)	кг	0.170	0.260	0.450	0.800	0.900	1.400	2.400

Каталожные номера


Серводвигатель BSH

Для выбора серводвигателя BSH с удерживающим тормозом или без него необходимо обратиться к разделу «Каталожные номера» на стр. 104.

Встроенный датчик положения ротора

Датчик положения ротора, встроенный в серводвигатель BSH

Описание

Одно- или многооборотный датчик положения ротора SinCos Hiperface®, встроенный в серводвигатель ВМН, является стандартным измерительным устройством, полностью адаптированным к сервопреобразователю Lexium 32.

Применение данного датчика с интерфейсом передачи данных обеспечивает:

- автоматическую идентификацию параметров серводвигателя ВМН сервопреобразователем;
- автоматическую инициализацию контуров регулирования, упрощая таким образом ввод в действие устройств управления перемещением.

Характеристики			
Тип датчика		Однооборотный SinCos	Многооборотный SinCos
Количество периодов sin/cos на оборот		128	
Количество точек (1)		131 072	131 072 х 4096 оборотов
Точность датчика	Угловые минуты	± 1.3	
М етод измерения		Оптический, высокое разрешение	
Интерфейс		Hiperface®	
Диапазон рабочих температур	°C	-20+110	

(1) Разрешение датчика приведено для использования с сервопреобразователем Lexium 32

Каталожные номера

Серводвигатель BSH

Для выбора одно- или многооборотного датчика SinCos Hiperface®, встроенного в серводвигатель BSH, необходимо обратиться к разделу «Каталожные номера» на стр. 104.

(продолжение)

Серводвигатели BSH

Планетарные редукторы GBX

Описание

Планетарный редуктор GBX

Во многих случаях в процессе управления перемещениями требуется использование планетарных редукторов, согласующих скорости и моменты и обеспечивающих при этом точность, требуемую механизмом.

Для использования с серводвигателями серии BSH компания Schneider Electric выбрала редукторы типа GBX (изготовитель Neugart). Эти редукторы не нуждаются в дополнительной смазке в течение всего срока службы и могут использоваться в механизмах, не требующих очень малых люфтов. Совместное использование данных редукторов с серводвигателями BSH тщательно изучено, соединение данных устройств очень легко осуществимо, и при этом гарантируется простая и надежная эксплуатация.

Предлагаются планетарные редукторы 5 типоразмеров (GBX 40...GBX 160) с 15 вариантами передаточных отношений (3:1...100:1), см. приведенную ниже таблицу.

Длительный и пиковый моменты при нулевой скорости, получаемые на выходе редуктора, рассчитываются путем умножения значений соответствующих характеристик серводвигателя на понижающее передаточное отношение и КПД редуктора (0.96, 0.94 или 0.9 в зависимости от передаточного отношения).

В приведенной ниже таблице представлены наиболее предпочтительные сочетания серводвигателя и редуктора. Для расчета других возможных комбинаций необходимо обращаться к техническим характеристикам серводвигателя.

Предпочтительные и	комбинации се	рводвигате	ля BSH и пла	анетарного	редуктора (BX		
Понижающий передаточн	ный коэффициент	от 3:1 до 16:1						
Тип серводвигателя	Передаточно	е отношение						
	3:1	4:1	5:1	8:1	9:1	12:1	15:1	16:1
BSH 0551	GBX 40	GBX 40	GBX 40	GBX 40	GBX 40	GBX 40	GBX 40	GBX 40
BSH 0552	GBX 40	GBX 40	GBX 40	GBX 60	GBX 40	GBX 40	GBX 60	GBX 60
BSH 0553	GBX 40	GBX 40	GBX 40	GBX 60	GBX 40	GBX 40	GBX 60	GBX 60
BSH 0701	GBX 60	GBX 60	GBX 60	GBX 60	GBX 60	GBX 60	GBX 60	GBX 60
BSH 0702	GBX 60	GBX 60	GBX 60	GBX 80	GBX 60	GBX 60	GBX 80	GBX 80
BSH 0703	GBX 60	GBX 60	GBX 60	GBX 80	GBX 60	GBX 80	GBX 80	GBX 80
3SH 1001	GBX 80	GBX 80	GBX 80	GBX 80	GBX 80	GBX 80	GBX 80	GBX 80
BSH 1002	GBX 80	GBX 80	GBX 80	GBX 120	GBX 80	GBX 80	GBX 120	GBX 120
BSH 1003	GBX 80	GBX 80	GBX 80	GBX 120	GBX 80	GBX 120	GBX 120	GBX 120
3SH 1004	GBX 120	GBX 120	GBX 120	GBX 120	GBX 120	GBX 120	GBX 160	GBX 160
3SH 1401	GBX 120	GBX 120	GBX 120	GBX 120	GBX 120	GBX 120	GBX 160	GBX 160
3SH 1402	GBX 120	GBX 120	GBX 120	GBX 160	_	GBX 160	GBX 160	GBX 160
3SH 1403	GBX 120	GBX 120	GBX 120	GBX 160	_	GBX 160	GBX 160	GBX 160
3SH 1404	GBX 120	GBX 120	GBX 160	GBX 160	_	GBX 160	GBX 160	GBX 160
Понижающий передаточн	ный коэффициент	от 20:1 до 100:	:1					·
Тип серводвигателя	Передаточно	е отношение						
	20:1	25:1	32:1	40:1	60:1	80:1	100:1	
3SH 0551	GBX 40	GBX 60	GBX 60	GBX 60	GBX 60	_	_	
3SH 0552	GBX 60	GBX 60	GBX 60	_	_	_	_	
3SH 0553	GBX 60	_	_	_	_	_	_	
3SH 0701	GBX 80	GBX 80	GBX 80	GBX 80	GBX 120	GBX 120	GBX 120	
BSH 0702	GBX 80	GBX 80	GBX 120	GBX 120	GBX 120	GBX 120	GBX 120	
BSH 0703	GBX 80	GBX 120	GBX 120	GBX 120	GBX 120	GBX 120	GBX 120	
3SH 1001	GBX 80	GBX 120	GBX 120	GBX 120	-	_	_	
BSH 1002	GBX 120	GBX 160	GBX 160	GBX 160	_	_	_	
3SH 1003	GBX 120	GBX 160	GBX 160	GBX 160	_	-	_	
3SH 1004	GBX 160	GBX 160	GBX 160	GBX 160	_	_	_	
3SH 1401	GBX 160	GBX 160	GBX 160	GBX 160	_	_	_	
3SH 1402	GBX 160	GBX 160	GBX 160	GBX 160	-	_	_	
BSH 1403	GBX 160	GBX 160	GBX 160	GBX 160	_	_	_	
BSH 1404	GBX 160	_	_	_	_	_		

GBX 60

Для комбинаций, выделенных таким способом, необходимо убедиться, что требуемый механизмом момент не превышает максимальный располагаемый момент на выходе редуктора (см. значения, приведенные на стр. 112).

 Характеристики:
 Каталожные номера:
 Р

 стр. 111
 стр. 113
 с

стр. 114

Монтаж: стр. 115

(продолжение)

Типоразмеры редуктора			GBX 40	GBX 60	GBX 80	GBX 120	GBX 160		
Тип редуктора				анетарный редуктор			0.211100		
Свободный ход	3:1 8:1	Угл.	< 24	< 16	< 9	< 8	< 6		
отогония мод	9:1 40:1	мин	< 28	< 20	< 14	< 12	< 10		
	60:1 100:1		< 30	< 22	< 16	< 14	-		
Жесткость при кручении	3:1 8:1	Н-м/	1	2.3	6	12	38		
	9:1 40:1	Угл. мин	1	2.5	6.5	13	41		
	60:1 100:1	Mili	1	2.5	6.3	12	-		
Уровень шума (1)		дБ (А)	55	58	60	65	70		
Корпус			Анодированный	і алюминий черного	цвета				
Материал вала			C 45						
Степень защиты выхода вала			IP 54						
Смазка			На весь срок сл	ужбы					
Средний срок службы (2)		ч	30000						
Монтажное положение			Любое						
Диапазон рабочей температуры	°C	-25+90							
кпд	3:18:1		0.96						
	9:140:1		0.94						
	60:1100:1		0.9						
Максимально допустимые	L _{10h} = 10000 часов	н	200	500	950	2000	6000		
радиальные усилия (2) (3)	L _{10h} = 30000 часов	н	160	340	650	1500	4200		
Максимально допустимые осевые	L _{10h} = 10000 часов	н	200	600	1200	2800	8000		
у с илия (2)	L _{10h} = 30000 часов	Н	160	450	900	2100	6000		
Момент инерции редуктора	3:1	K Г ∙CM²	0.031	0.135	0.77	2.63	12.14		
	4:1	K r ⋅cm²	0.022	0.093	0.52	1.79	7.78		
	5:1	K r ⋅cm²	0.019	0.078	0.45	1.53	6.07		
	8:1	K Г ∙CM²	0.017	0.065	0.39	1.32	4.63		
	9:1	K Г ∙CM ²	0.03	0.131	0.74	2.62	-		
	12:1	K r ⋅cm²	0.029	0.127	0.72	2.56	12.37		
	15:1	K Г ∙CM²	0.023	0.077	0.71	2.53	12.35		
	16:1	K Г ∙CM ²	0.022	0.088	0.5	1.75	7.47		
	20:1	K Г ∙CM ²	0.019	0.075	0.44	1.5	6.65		
	25:1	K Г ∙CM²	0.019	0.075	0.44	1.49	5.81		
	32:1	K Г ∙CM ²	0.017	0.064	0.39	1.3	6.36		
	40:1	K Г ∙CM²	0.016	0.064	0.39	1.3	5.28		
	60:1	KΓ•CM ²	0.029	0.076	0.51	2.57	-		
	80:1	KΓ·CM ²	0.019	0.075	0.5	1.5	-		
			-						

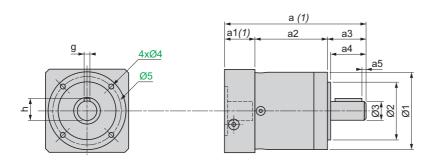
⁽¹⁾ Значение, полученное при измерении на расстоянии 1 м, частота вращения не нагруженного серводвигателя 3000 об/мин, передаточное отношение 5:1. (2) Значения приводятся для скорости выходного вала 100 об/мин в режиме S1 для электрической машины при температуре окружающей среды 30°C. (3) Усилия прикладываются в середине выходного вала.

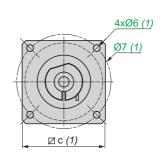
І лительный момент на выходе M _{2N} 1)	3:1				GBX 80		GBX 160
1)		Н-м	11	28	85	115	400
	4:1	Н∙м	15	38	115	155	450
	5:1	Н∙м	14	40	110	195	450
	8:1	Н∙м	6	18	50	120	450
	9:1	Н∙м	16.5	44	130	210	-
	12:1	Н∙м	20	44	120	260	800
	15:1	Н∙м	18	44	110	230	700
	16:1	Н∙м	20	44	120	260	800
	20:1	Н∙м	20	44	120	260	800
	25:1	Н∙м	18	40	110	230	700
	32:1	Н∙м	20	44	120	260	800
	40:1	Н∙м	18	40	110	230	700
	60:1	Н∙м	20	44	110	260	-
	80:1	Н∙м	20	44	120	260	-
	100:1	Н∙м	20	44	120	260	-
М аксимальный момент на выходе	3:1	Н·м	17.6	45	136	184	640
1)	4:1	Н∙м	24	61	184	248	720
	5:1	Н∙м	22	64	176	312	720
	8:1	Н∙м	10	29	80	192	720
	9:1	Н∙м	26	70	208	336	-
	12:1	Н∙м	32	70	192	416	1280
	15:1	Н∙м	29	70	176	368	1120
	16:1	Н∙м	32	70	192	416	1280
	20:1	Н∙м	32	70	192	416	1280
	25:1	Н∙м	29	64	176	368	1120
	32:1	Н∙м	32	70	192	416	1280
	40:1	Н∙м	29	64	176	368	1120
	60:1	Н∙м	32	70	176	416	-
	80:1	Н∙м	32	70	192	416	-
	100:1	Н∙м	32	70	192	416	-

⁽¹⁾ Значения приводятся для скорости выходного вала 100 об/мин в режиме S1 для электрической машины при температуре окружающей среды 30°C.

(продолжение)

Каталожные номера				
	Типо- размер	Передаточное отношение	№ по каталогу	Масса, кг
	GBX 40	3:1, 4:1, 5:1 и 8:1	GBX 040●●● ●● ●F	0.350
		9:1, 12:1, 15:1, 16:1 и 20:1	GBX 040••• ••• •F	0.450
	GBX 60	3:1, 4:1, 5:1 и 8:1	GBX 060••• ••• •F	0.900
6		9:1, 12:1, 15:1, 16:1, 20:1, 25:1, 32:1 и 40:1	GBX 060••• ••• •F	1.000
		60:1	GBX 060••• ••• •F	1.300
GBX •••	GBX 80	3:1, 4:1, 5:1 и 8:1	GBX 080••• ••• •F	2.100
		9:1, 12:1, 15:1, 16:1, 20:1, 25:1, 32:1 и 40:1	GBX 080 • • • • F	2.600
		60:1, 80:1 и 100:1	GBX 080••• ••• •F	3.100
	GBX 120	3:1, 4:1, 5:1 и 8:1	GBX 120••• ••• •F	6.000
		9:1, 12:1, 15:1, 16:1, 20:1, 25:1, 32:1 и 40:1	GBX 120 • • • • • F	8.000
		60:1, 80:1 и 100:1	GBX 120••• ••• •F	10.000
	GBX 160	5:1 и 8:1	GBX 160••• ••• •F	18.000
		12:1, 15:1, 16:1, 20:1, 25:1, 32:1 и 40:1	GBX 160••• ••• •F	22.000


		GBX	•••	•••	•••	•	F
Гипоразмер	Диаметр корпуса	40 MM	040				
	(см. таблицу совместимости	60 мм	060				
	с серводвигателями BSH, стр. 110)	80 мм	080				
	orp. 110)	120 мм	120				
		160 мм	160				
Тередаточное отношение		3:1		003			
		4:1		004			
		5:1		005			
		8:1		008			
		9:1		009			
		12:1		012			
		15:1		015			
		16:1		016			
		20:1		020			
		25:1		025			
		32:1		032			
		40:1		040			
		60:1		060			
		80:1		080			
		100:1		100			
Ірисоединение	Тип	BSH 055			055		
серводвигателю BSH		BSH 070			070		
		BSH 100			100		
		BSH 140			140		
	Модель	BSH ●●●1				1	
		BSH ●●●2				2	
		BSH ●●●3				3	
		BSH ●●●4				4	
Адаптация серводвигателя BS	Н						F


Описание:	Характеристики:	Размеры:	Монтаж:
стр. 110	cm 111	стр. 114	стр 115

(продолжение)

Размеры

Вид сборки со стороны серводвигателя

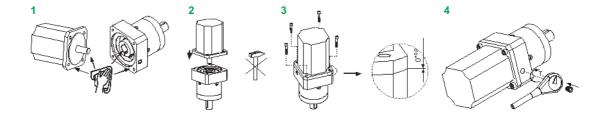
GBX	a2	a3	a4	a5	hrs	g	Ø1	Ø2	Ø3	Ø4	Ø5
040 003008	39	26	23	2.5	11.2	3	40	26 h7	10 h7	M4 x 6	34
040 009020	52	26	23	2.5	11.2	3	40	26 h7	10 h7	M4 x 6	34
060 003008	47	35	30	2.5	16	5	60	40 h7	14 h7	M5 x 8	52
060 009040	59.5	35	30	2.5	16	5	60	40 h7	14 h7	M5 x 8	52
060 060	72	35	30	2.5	16	5	60	40 h7	14 h7	M5 x 8	52
080 003008	60.5	40	36	4	22.5	6	80	60 h7	20 h7	M6 x 10	70
080 009040	77.5	40	36	4	22.5	6	80	60 h7	20 h7	M6 x 10	70
080 060100	95	40	36	4	22.5	6	80	60 h7	20 h7	M6 x 10	70
120 003008	74	55	50	5	28	8	115	80 h7	25 h7	M10 x 16	100
120 009040	101	55	50	5	28	8	115	80 h7	25 h7	M10 x 16	100
120 060100	128	55	50	5	28	8	115	80 h7	25 h7	M10 x 16	100
160 005, 008	104	87	80	8	43	12	160	130 h7	40 h7	M12 x 20	145
160 012040	153.5	87	80	8	43	12	160	130 h7	40 h7	M12 x 20	145

(1) Размеры a, a1, Øс, Ø6 и Ø7 зависят от комбинации редуктора GBX и серводвигателя BSH:

Варианты комбина	ации	Передаточное отношение									
Редуктор	Серводвигатель	От 3:1 до 8:1	От 9:1 до 40:1	От 60:1 до 100:1	От 3:1 до 100:1	От 3:1 до 100:1	От 3:1 до 100:1	От 3:1 до 100:1			
		а	a	a	a1	_ ⊠c	Ø6	Ø7			
GBX 040	BSH 055●	89.5	102.5	_	24.5	60	M4	63			
GBX 060	BSH 055●	106	118.5	131.5	24	60	M4	63			
GBX 060	BSH 0701, 0702	106	118.5	131.5	24	70	M5	75			
GBX 060	BSH 0703	113	125.5	138.5	31	70	M5	75			
GBX 080	BSH 070●	133.5	151	168.5	33.5	80	M5	82			
GBX 080	BSH 10011003	143.5	161	178.5	43.5	100	M8	115			
GBX 120	BSH 070●	-	203.5	231	47.5	115	M5	75			
GBX 120	BSH 10011003	176.5	203.5	231	47.5	115	M8	115			
GBX 120	BSH 1004	186.5	213.5	241	57.5	115	M8	115			
GBX 120	BSH 140●	186.5	213.5	-	57.5	140	M10	165			
GBX 160	BSH 10021004	-	305	-	64.5	140	M8	115			
GBX 160	BSH 140●	255.5	305	_	64.5	140	M10	165			

(продолжение)

Серводвигатели BSH


Планетарные редукторы GBX

Монтаж

Для соединения планетарного редуктора GBX и серводвигателя BSH не требуется использование специальных инструментов. Соединение необходимо выполнять с соблюдением общих правил механических монтажных работ в следующей последовательности:

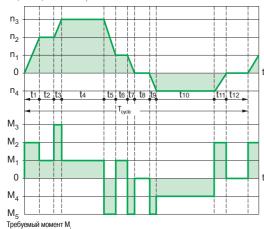
- 1 Очистите сопрягаемые поверхности и места уплотнений
- 2 Оцентрируйте соединяемые валы, сборка выполняется в вертикальном положении
- **3** Обеспечьте равномерное прилегание фланцев серводвигателя и редуктора, «наживите» винты с крестообразными шлицами
- **4** Затяните винты, соблюдая момент затяжки кольца ТА при помощи динамометрического ключа (2...40 H·м в зависимости от модели редуктора)

Более подробная информация по монтажу приведена в инструкциях к каждому изделию, входящих в комплект поставки.

Schneider

Техническое приложение

Расчет параметров серводвигателей


Расчет параметров серводвигателей

Для расчета параметров серводвигателей используется программное обеспечение Lexium Sizer, доступное на сайте www.schneider-electric.ru.

Данный раздел каталога помогает понять используемый в программе метод расчета.

Для определения типоразмера серводвигателя необходимо знать эквивалентный тепловой момент и среднюю скорость механизма для привода которого используется серводвигатель. Оба параметра рассчитываются на основе циклограммы работы серводвигателя и сравниваются с характеристиками скорости/момента, приведенными для каждого серводвигателя (см. характеристики комбинаций серводвигателя/сервопреобразователя).

Скорость серводвигателя п

Циклограмма работы серводвигателя

Рабочий цикл серводвигателя условно подразделяется на более короткие подциклы, длительность каждого из которых известна.

Каждый подцикл, в свою очередь, подразделяется на периоды, в течение которых момент двигателя постоянен (максимальное число периодов в подцикле - не более трех).

Такое деление на периоды позволяет рассчитать для каждого периода следующие значения:

- Длительность (t_i)
- Скорость (n_i)
- Необходимый момент (M,)

На приведенном графике показаны четыре возможных типа периодов:

- Разгон с постоянной величиной ускорения в течение периодов t₁, t₂ и t₃
- Работа с постоянной скоростью в периоды t_2 , t_4 , t_6 и t_{10}
- Торможение с постоянной величиной замедления в течение периодов t_s, t_z и t_z,
- Останов двигателя в периоды t_8 и t_{12}

При этом общая продолжительность цикла составляет:

$$\mathbf{T}_{\text{cycle}} = \mathbf{t}_{\text{1}} + \mathbf{t}_{\text{2}} + \mathbf{t}_{\text{3}} + \mathbf{t}_{\text{4}} + \mathbf{t}_{\text{5}} + \mathbf{t}_{\text{6}} + \mathbf{t}_{\text{7}} + \mathbf{t}_{\text{8}} + \mathbf{t}_{\text{9}} + \mathbf{t}_{\text{10}} + \mathbf{t}_{\text{11}} + \mathbf{t}_{\text{12}}$$

Расчет средней скорости n_{avq}

Средняя скорость определяется по формуле: $n_{\text{moy}} = \frac{\sum \left| n_i \right| \cdot t_j}{\sum t_i}$

- п, соответствует различным рабочим скоростям
- $\frac{n_i}{2}$ соответствует средним скоростям в периоды разгона (торможения) с постоянным ускорением (замедлением)

На приведенной выше циклограмме работы:

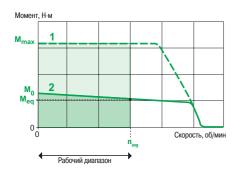
				P 4									
Длительность t _j	t ₁	t ₂	t ₃	t ₄	t ₅	t ₆	t ₇	t ₈	t ₉	t ₁₀	t ₁₁	t ₁₂	
Скорость $\left n_i \right $	$\frac{ \mathbf{n}_2 }{2}$	$ \mathbf{n}_2 $	$\frac{\left \mathbf{n}_{3}\right +\left \mathbf{n}_{2}\right }{2}$	n ₃	$\frac{\left \mathbf{n}_{3}\right +\left \mathbf{n}_{1}\right }{2}$	n ₁	n ₁	0	$\frac{ \mathbf{n}_4 }{2}$	$ n_4 $	n ₄	0	

Средняя скорость рассчитывается следующим образом:

$$n_{\text{moy}} = \frac{\frac{n_2}{2} \cdot t_1 + n_2 \cdot t_2 + \frac{n_3 + n_2}{2} \cdot t_3 + n_3 \cdot t_4 + \frac{n_3 + n_1}{2} \cdot t_5 + n_1 \cdot t_6 + \frac{n_1}{2} \cdot t_7 + \frac{n_4}{2} \cdot t_9 + n_4 \cdot t_{10} + \frac{n_4}{2} \cdot t_{11}}{T_{\text{profis}}}$$

Расчет эквивалентного теплового момента М

Эквивалентный тепловой момент рассчитывается по формуле:


$$M_{\text{eq}} = \sqrt{\frac{\sum {M_i}^2 \cdot t_j}{T_{\text{cycle}}}}$$

Для приведенной выше циклограммы работы формула расчета выглядит следующим образом:

$$\mathsf{M}_{\text{eq}} = \sqrt{\frac{\mathsf{M}_2^2 \cdot \mathsf{t}_1 + \mathsf{M}_1^2 \cdot \mathsf{t}_2 + \mathsf{M}_3^2 \cdot \mathsf{t}_3 + \mathsf{M}_1^2 \cdot \mathsf{t}_4 + \mathsf{M}_5^2 \cdot \mathsf{t}_5 + \mathsf{M}_1^2 \cdot \mathsf{t}_6 + \mathsf{M}_5^2 \cdot \mathsf{t}_7 + \mathsf{M}_5^2 \cdot \mathsf{t}_9 + \mathsf{M}_4^2 \cdot \mathsf{t}_{10} + \mathsf{M}_2^2 \cdot \mathsf{t}_{11}}{\mathsf{T}_{\text{cycle}}}$$

Техническое приложение

Расчет параметров серводвигателей

- 1 Пиковый момент
- 2 Длительный момент

Расчет параметров серводвигателей (продолжение)

Определение типоразмера серводвигателя

Точка, определенная предыдущими вычислениями (средняя скорость и эквивалентный тепловой момент) и лежащая на пересечении горизонтальной оси, представляющей собой среднюю скорость \mathbf{n}_{avg} , и вертикальной оси, представляющей собой эквивалентный тепловой момент \mathbf{M}_{eq} должна находиться в пределах сектора, ограниченного характеристикой $\mathbf{2}$ и рабочей зоной.

Кроме того, на основании циклограммы работы серводвигателя необходимо убедиться, что все требуемые моменты M_1 , соответствующие скоростям n_1 во время различных периодов цикла, находятся в пределах сектора, ограниченного характеристикой 1 и рабочей зоной.

Для заметок

Schneider Electric в странах СНГ

Пройдите бесплатное онлайнобучение в Энергетическом Университете и станьте профессионалом в области энергоэффективности.

Для регистрации зайдите на www.MyEnergyUniversity.com

По вопросам сервисного обслуживания оборудования Schneider Electric* обращайтесь в Центр поддержки клиентов по тел.: 8 (800) 200 64 46 или присылайте запросы по адресу

service-rus@schneider-electric.com

* APC, Citect, France Transfo, Gardy, GUTOR, Merlin Gerin, MGE, Pelco, TAC, Telemecanique, Uniflair, Vamp

Центр поддержки клиентов

ru.ccc@schneider-electric.com

www.schneider-electric.com

Тел.: 8 (800) 200 64 46 (многоканальный)

Тел.: (495) 777 99 88, факс: (495) 777 99 94

Беларусь

Минск

220006, ул. Белорусская, 15, офис 9 Тел.: (37517) 327 60 34, 327 60 72

Казахстан

Алматы

050009, пр-т Абая, 151/115 Бизнес-центр «Алатау», этаж 12 Тел.: (727) 397 04 00

Факс: (727) 397 04 05

Астана

010000, ул. Бейбитшилик, 18

Офис 402

Тел.: (7172) 91 06 69 Факс: (7172) 91 06 70

Атырау

060002, ул. Абая, 2 А Бизнес-центр «Сутас-С», офис 106

Тел.: (7122) 32 31 91 Факс: (7122) 32 37 54

Россия

Волгоград

400089, ул. Профсоюзная, 15, офис 12 Тел.: (8442) 93 08 41

Воронеж

394026, пр-т Труда, 65, офис 227 Тел.: (4732) 39 06 00 Тел./факс: (4732) 39 06 01

Екатеринбург

620014, ул. Радищева, 28, этаж 11 Тел.: (343) 378 47 36, 378 47 37

Иркутск

664047, ул. 1-я Советская, 3 Б, офис 312 Тел./факс: (3952) 29 00 07, 29 20 43

Казань

420107, ул. Спартаковская, 6, этаж 7 Тел./факс: (843) 526 55 84 / 85 / 86 / 87 / 88

Калининград

236040, Гвардейский пр., 15 Тел.: (4012) 53 59 53 Факс: (4012) 57 60 79

Краснодар

350063, ул. Кубанская набережная, 62 / ул. Комсомольская, 13, офис 224

. Тел.: (861) 278 00 62

Тел./факс: (861) 278 01 13, 278 00 62 / 63

Красноярск

660021, ул. Горького, 3 А, офис 302

Тел.: (3912) 56 80 95 Факс: (3912) 56 80 96

Москва

127018, ул. Двинцев, 12, корп. 1 Бизнес-центр «Двинцев» Тел.: (495) 777 99 90 Факс: (495) 777 99 92

Мурманск

183038, ул. Воровского, д. 5/23 Конгресс-отель «Меридиан», офис 421

Тел.: (8152) 28 86 90 Факс: (8152) 28 87 30

Нижний Новгород

603000, пер. Холодный, 10 А, этаж 8 Тел./факс: (831) 278 97 25, 278 97 26

Новосибирск

630132, ул. Красноярская, 35 Бизнес-центр «Гринвич», офис 1309 Тел./факс: (383) 227 62 53, 227 62 54

Пермь

614010, Комсомольский пр-т, 98, офис 11 Тел./факс: (342) 281 35 15, 281 34 13, 281 36 11

Ростов-на-Дону

344002, ул. Социалистическая, 74, офис 1402 Тел.: (863) 261 83 22

Факс: (863) 261 83 23

Самара

443045, ул. Авроры, 150 Тел.: (846) 278 40 86 Факс: (846) 278 40 87

Санкт-Петербург

196158, Пулковское шоссе, 40, корп. 4, литера А

Бизнес-центр «Технополис» Тел.: (812) 332 03 53 Факс: (812) 332 03 52

Сочи

354008, ул. Виноградная, 20 А, офис 54

Тел.: (8622) 96 06 01, 96 06 02 Факс: (8622) 96 06 02

Уфа

450098, пр-т Октября, 132/3 (бизнес-центр КПД)

Блок-секция № 3, этаж 9 Тел.: (347) 279 98 29 Факс: (347) 279 98 30

Хабаровск

680000, ул. Муравьева-Амурского, 23, этаж 4

Тел.: (4212) 30 64 70 Факс: (4212) 30 46 66

Украина

Днепропетровск

49000, ул. Глинки, 17, этаж 4 Тел.: (056) 79 00 888 Факс: (056) 79 00 999

Донецк

83003, ул. Горячкина, 26 Тел.: (062) 206 50 44 Факс: (062) 206 50 45

Кие

03057, ул. Металлистов, 20, литера Т

Тел.: (044) 538 14 70 Факс: (044) 538 14 71

Львов

79015, ул. Героев УПА, 72, корп. 1 Тел./факс: (032) 298 85 85

Николаев

54030, ул. Никольская, 25 Бизнес-центр «Александровский»

Офис 5

Тел.: (0512) 58 24 67 Факс: (0512) 58 24 68

Симферополь

Тел.: (050) 446 50 90, 383 41 75

Харьков

61070, ул. Академика Проскуры, 1 Бизнес-центр «Telesens» Офис 204

Тел.: (057) 719 07 49 Факс: (057) 719 07 79